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EV & EW

Remember the characteristic equation (M - A)x =07

A will be an eigenvalue (EW) of M with a corresponding eigenvector x (EV). To find
A we compute det(M - AI)=0.

Things we ask ourselves (and by the way, understanding them is useful)

Why do we care about det(M — AI)?
We care about it because A will be an EW of M with nonzero EV if and only if
det(M — AI) = 0. Which means that det(M - AI) = 0 is one necessary and sufficient

condition for A to be an EW.

Ok, but what makes eigenvectors so unique?

Well, given a matrix M the problem is to find those special vectors x on which M acts
as simple multiplication (i.e. Mx = Ax ), which means that Mx points in the same
direction as x.

The determination of the eigenvectors and eigenvalues of a system is equivalent to matrix
diagonalization. Therefore, if we can find a linear transformation to diagonalize the
covariance matrix we can obtain uncorrelated random variables in general and

independent random variables for normal distributions.



Aha! We know that a couple of things are easier and have nice properties with uncorrelated
random variables and with independent random variables. In general, if we have a sample that
comes from a normal distribution, variables are correlated and it often helps to view the data in a

different way, for example in a new coordinate system.

EV & EW + covariance matrix

Let’s start with understanding normal distributions.

Normal distributions have many nice and important properties such as

* Two uncorrelated normally distributed random variables are independent -- remember

that this is generally not true for other random variables.

* A normal distribution is completely defined by its mean vector and its covariance matrix
-- that is why we are concerned about how the mean and the variance changes under

specific transformations.

* The marginal densities and the conditional densities are also normal

Why do we care about covariance matrices?

Since a diagonal covariance matrix means uncorrelated variables and particularly independent
variables for a normal distribution, a “transformation” will allow us to always -- always happens
just because of a property of the normal distribution (check Problem Set 2) -- find a set of axes

such that random variables are independent in the new coordinate system.

EV & EW + covariance matrix + transformations

So, what are those transformations that will yield a “nice looking” normal distribution?
1. Linear transformation : to zero-mean — this is specially helpful because the covariance
will be equal to the correlation.
2. Orthonormal transformation : to decorrelate -- orthonormal matrices have energy

preserving characteristics.



3. Whitening transformation : to scale the EV in proportion to 1/ \/)u_ (i.e. make the

covariance matrix equal to the identity matrix (I)). We do it because after applying the

whitening transformation, the covariance matrix is invariant under any orthonormal

transformation.
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We start with two symmetric matrices 21 and 22.

1. We get the eigenvector and eigenvalue matrices
of 21, @ and ® respectively;

2. We whiten 21 by Y=0"0'x;

3. %1 and X2 are transformed to I and K . In general
K is not a diagonal matrix.

4. We get ¥ and A, the eigenvector and eigenvalue
matrices of K.

5. We apply an orthon(T)nnal transformation to
diagonalize K by Z=VY'y;

6. | is invariant under this transformation.

7. Now both matrices are diagonalized.



