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EV & EW 

 

Remember the characteristic equation (M I)x = 0? 

 will be an eigenvalue (EW) of M  with a corresponding eigenvector x  (EV).  To find 

 we compute det(M I) = 0 . 

 

Things we ask ourselves (and by the way, understanding them is useful) 

• Why do we care about det(M I)? 

We care about it because  will be an EW of M  with nonzero EV if and only if 

det(M I) = 0.  Which means that det(M I) = 0  is one necessary and sufficient 

condition for  to be an EW. 

 

• Ok, but what makes eigenvectors so unique? 

Well, given a matrix M  the problem is to find those special vectors x  on which M  acts 

as simple multiplication (i.e. Mx = x ), which means that Mx  points in the same 

direction as x .  

The determination of the eigenvectors and eigenvalues of a system is equivalent to matrix 

diagonalization.  Therefore, if we can find a linear transformation to diagonalize the 

covariance matrix we can obtain uncorrelated random variables in general and 

independent random variables for normal distributions.   

 

 



Aha! We know that a couple of things are easier and have nice properties with uncorrelated 

random variables and with independent random variables.  In general, if we have a sample that 

comes from a normal distribution, variables are correlated and it often helps to view the data in a 

different way, for example in a new coordinate system.  

 

 

EV & EW + covariance matrix 

 

Let’s start with understanding normal distributions. 

Normal distributions have many nice and important properties such as  

 

• Two uncorrelated normally distributed random variables are independent -- remember 

that this is generally not true for other random variables. 

 

• A normal distribution is completely defined by its mean vector and its covariance matrix 

-- that is why we are concerned about how the mean and the variance changes under 

specific transformations.  

 

• The marginal densities and the conditional densities are also normal 

 

Why do we care about covariance matrices? 

Since a diagonal covariance matrix means uncorrelated variables and particularly independent 

variables for a normal distribution, a “transformation” will allow us to always -- always happens 

just because of a property of the normal distribution (check Problem Set 2) -- find a set of axes 

such that random variables are independent in the new coordinate system.  

 

 

EV & EW + covariance matrix + transformations 

 

So, what are those transformations that will yield a “nice looking” normal distribution? 

1. Linear transformation : to zero-mean – this is specially helpful because the covariance 

will be equal to the correlation. 

2. Orthonormal transformation : to decorrelate -- orthonormal matrices have energy 

preserving characteristics.  



3. Whitening transformation : to scale the EV in proportion to 1/ i  (i.e. make the 

covariance matrix equal to the identity matrix (I)).  We do it because after applying the 

whitening transformation, the covariance matrix is invariant under any orthonormal 

transformation. 
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We start with two symmetric matrices Σ1  and Σ2. 

1. We get the eigenvector and eigenvalue matrices
of  Σ1 , Θ and Φ respectively;
2. We whiten Σ1  by Y= Θ
3. Σ1  and Σ2 are transformed to I and K . In general 
K is not a diagonal matrix.

½
ΦTx;

4. We get Ψ and Λ, the eigenvector and eigenvalue
matrices of K.

5. We apply an orthonormal transformation to
diagonalize K by Z=Ψ

6. Ι is invariant under this transformation.
7. Now both matrices are diagonalized.

T
y;

 


