
Problem Set 3

MAS 622J/1.126J: Pattern Recognition and Analysis

Due: 5:00 p.m. on October 12

[Note: All instructions to plot data or write a program should be carried out using Matlab. In order to
maintain a reasonable level of consistency and simplicity we ask that you do not use other software tools.]

If you collaborated with other members of the class, please write their names at the end of the assign-
ment. Moreover, you will need to write and sign the following statement: “In preparing my solutions, I
did not look at any old homeworks, copy anybody’s answers or let them copy mine.”

Problem 1: Discriminability and ROC [20 points]

Please download the datasets (dataset1.txt, dataset2.txt, dataset3.txt, dataset4.txt) from the course web-
site. Each dataset includes 1-D data samples from two classes w1 and w2. The first column and the second
column of each dataset specify 1000 samples from class w1 and 1000 samples from class w2, respectively.

a. For each dataset, compute the discriminability d′ = |µ2−µ1|√
σ2
1+σ

2
2

where µ1 and σ1 are the mean and

standard deviation of the distribution of class w1, and µ2 and σ2 are the mean and standard deviation
of the distribution of class w2.

Solution: Please refer to the Matlab code for (b). Approximately, For dataset1: µ1 ' 10, µ2 ' 12,
σ1 ' 1, σ2 ' 1, d′ ' 1.39
For dataset2: µ1 ' 10, µ2 ' 12, σ1 ' 4, σ2 ' 1, d′ ' 0.46
For dataset3: µ1 ' 10, µ2 ' 12, σ1 ' 1, σ2 ' 4, d′ ' 0.45
For dataset4: µ1 ' 10, µ2 ' 12, σ1 ' 4, σ2 ' 4, d′ ' 0.31

b. Now we compute the ROC curve for each dataset. Please plot four ROC curves in the same
figure. To do this, we approximate PTP = P(x > x∗|x ∈ w2) by N(x > x∗|x ∈ w2)/1000, and
PFP = P(x > x∗|x ∈ w1) by N(x > x∗|x ∈ w1)/1000. Here, for i =1 or 2, N(x > x∗|x ∈ wi) is
denotes the number of samples in class wi whose value is greater than x∗. Note that N doesn’t
denote a normal distribution!

Solution: Changing the classifier value (x∗) from −∞ to ∞, we can plot the ROC curve for
each dataset. Note that when x∗ = −∞, PTP = 1 and PFP = 1 (corresponding to the upper-
most/rightmost position in the ROC curve), and when x∗ =∞, PTP = 0 and PFP = 0 (correspond-
ing to the lowermost/leftmost position in the ROC curve).

clear all

1

num_samples = 1000; % number of test samples from each class

sprintf(’dataset1:’)

dd = load(’dataset1.txt’);

% test samples from class 1

x1 = dd(:,1);

% test samples from class 2

x2 = dd(:,2);

Pd_save = [];

Pf_save = [];

% x_c is a classifier

for x_c = -10:0.5:30

% number of TP (True Positive) samples

nTP = length(find(x2 > x_c));

% approximate probability of hit, P(x > x_c | x in w=2)

Pd = nTP / num_samples;

% number of FP (False Positive) samples

nFP = length(find(x1 > x_c));

% approximate probability of false alarm, P(x > x_c | x in w=1)

Pf = nFP / num_samples;

Pd_save = [Pd_save; Pd];

Pf_save = [Pf_save; Pf];

end

mean1 = mean(x1)

mean2 = mean(x2)

sig1 = std(x1)

sig2 = std(x2)

sig = sqrt(sig1^2 + sig2^2)

discrim = abs(mean1 - mean2)/sig % d’

figure

hold on

plot(Pf_save, Pd_save, ’r’)

2

sprintf(’dataset2:’)

dd = load(’dataset2.txt’);

% test samples from class 1

x1 = dd(:,1);

% test samples from class 2

x2 = dd(:,2);

Pd_save = [];

Pf_save = [];

% x_c is a classifier

for x_c = -10:0.5:30

% number of TP (True Positive) samples

nTP = length(find(x2 > x_c));

% approximate probability of hit, P(x > x_c | x in w=2)

Pd = nTP / num_samples;

% number of FP (False Positive) samples

nFP = length(find(x1 > x_c));

% approximate probability of false alarm, P(x > x_c | x in w=1)

Pf = nFP / num_samples;

Pd_save = [Pd_save; Pd];

Pf_save = [Pf_save; Pf];

end

mean1 = mean(x1)

mean2 = mean(x2)

sig1 = std(x1)

sig2 = std(x2)

sig = sqrt(sig1^2 + sig2^2)

discrim = abs(mean1 - mean2)/sig % d’

plot(Pf_save, Pd_save, ’b’)

sprintf(’dataset3:’)

dd = load(’dataset3.txt’);

% test samples from class 1

x1 = dd(:,1);

3

% test samples from class 2

x2 = dd(:,2);

Pd_save = [];

Pf_save = [];

% x_c is a classifier

for x_c = -10:0.5:30

% number of TP (True Positive) samples

nTP = length(find(x2 > x_c));

% approximate probability of hit, P(x > x_c | x in w=2)

Pd = nTP / num_samples;

% number of FP (False Positive) samples

nFP = length(find(x1 > x_c));

% approximate probability of false alarm, P(x > x_c | x in w=1)

Pf = nFP / num_samples;

Pd_save = [Pd_save; Pd];

Pf_save = [Pf_save; Pf];

end

mean1 = mean(x1)

mean2 = mean(x2)

sig1 = std(x1)

sig2 = std(x2)

sig = sqrt(sig1^2 + sig2^2)

discrim = abs(mean1 - mean2)/sig % d’

plot(Pf_save, Pd_save, ’g’)

sprintf(’dataset4:’)

dd = load(’dataset4.txt’);

% test samples from class 1

x1 = dd(:,1);

% test samples from class 2

x2 = dd(:,2);

Pd_save = [];

Pf_save = [];

4

% x_c is a classifier

for x_c = -10:0.5:30

% number of TP (True Positive) samples

nTP = length(find(x2 > x_c));

% approximate probability of hit, P(x > x_c | x in w=2)

Pd = nTP / num_samples;

% number of FP (False Positive) samples

nFP = length(find(x1 > x_c));

% approximate probability of false alarm, P(x > x_c | x in w=1)

Pf = nFP / num_samples;

Pd_save = [Pd_save; Pd];

Pf_save = [Pf_save; Pf];

end

mean1 = mean(x1)

mean2 = mean(x2)

sig1 = std(x1)

sig2 = std(x2)

sig = sqrt(sig1^2 + sig2^2)

discrim = abs(mean1 - mean2)/sig % d’

plot(Pf_save, Pd_save, ’k’)

xlabel(’P_{FP}’)

ylabel(’P_{TP}’)

axis equal

axis([0 1 0 1])

legend(’dataset1’,’dataset2’,’dataset3’,’dataset4’)

hold off

5

c. For each dataset, plot the two approximated probability density functions. Note that the probability
density function is the derivative of the cumulative density function. (Do NOT just approximate
distributions by Gaussians and draw those approximated Gaussians in this problem.) Hint: Use the
same method we use in (b) to get the cumulative distribution. This is called Monte Carlo method.
Also, note that the derivative (i.e., probability density function p(x)) relates to the increment of the
cumulative density function PX(x). That is, p(x) = ∆PX(x)/∆x.

Solution:

function draw_distributions_all()

figure

% dataset1

% two sample distributions

dd = load(’dataset1.txt’);

draw_distributions(dd, 1);

% dataset2

% two sample distributions

dd = load(’dataset2.txt’);

draw_distributions(dd, 2);

% dataset3

% two sample distributions

dd = load(’dataset3.txt’);

6

draw_distributions(dd, 3);

% dataset4

% two sample distributions

dd = load(’dataset4.txt’);

draw_distributions(dd, 4);

function draw_distributions(dd, dataset_id)

numr = length(dd);% number of total samples for each distribution

delx = 0.5;

bins = -5:delx:30;

x1 = dd(:,1);

x2 = dd(:,2);

ref = (mu(1)+mu(2))/2;

c1 = histc(x1,bins);

c2 = histc(x2,bins);

p1 = c1/delx/numr;

p2 = c2/delx/numr;

% The above is exactly the same as this:

% cc1 = cumsum(c1)/numr;

% for t=1:length(bins)-1

% p1(t) = (cc1(t+1)-cc1(t))/delx;

% end

% p1(t+1) = 0;

% cc2 = cumsum(c2)/numr;

% for t=1:length(bins)-1

% p2(t) = (cc2(t+1)-cc2(t))/delx;

% end

% p2(t+1) = 0;

subplot(2,2,dataset_id)

hold on

plot(bins, p2, ’b’);

plot(bins, p1, ’r’)

axis([-5 30 0 0.5])

legend(’class1’, ’class2’)

7

xlabel(’value’)

ylabel(’Pr’)

titlestr = sprintf(’dataset%d’, dataset_id);

title(titlestr)

hold off

d. How does the discriminability relate to the ROC curve?

(Solution)

First, comparing dataset1 (d′ = 1.39) with dataset4 (d′ = 0.31), we can see that the two distributions
in dataset1 are more discriminable than the ones in dataset4 (See the distribution plot in (c)). Also,
from the ROC plot in (b), we find that better performance (here, meaning higher PTP and lower PFP

with the optimal classifier location) is achieved on dataset1, compared with dataset4. In general, for
two gaussian distributions, as d′ becomes bigger, PTP −PFP becomes bigger (Refer to the problem
5 (a) in our Problem Set 2).

Second, comparing dataset2 (d′ = 0.46) with dataset3 (d′ = 0.45), we can see that the discriminability
of the two distributions in dataset2 is almost the same as that of the ones in dataset3 (See the
distribution plot in (c)). Also, from the ROC plot in (b), we find that ROC curves of dataset3
and dataset4 have very different characteristics although the two have similar d′ values. Note that
depending on the shapes of two distributions (in dataset2, the distribution with higher mean has lower

8

variance, but in dataset3, the distribution with higher mean has higher variance), the characteristic
of the corresponding ROC curve is determined. Note that for each dataset, when the change of the
classifier value (x∗) happens at around the mean of the distribution with lower variance, the ROC
curve (PTP for dataset2, PFP for dataset3) radically changes.

Problem 2: (DHS 2.6) Optimal Decision Boundaries [20 points]

A Spanish campany called Goorrel has launched an application to recognize important e-mails (ω1) vs
unimportant e-mails (ω2.) The company is using two secret features such that their training data is well
approximated by two Gaussians:

p(x|ω1) ∼ N (µ1,Σ1)

p(x|ω2) ∼ N (µ2,Σ2)

where µ1 = [0 0]T , µ2 = [5 0]T , Σ1 = I, and Σ2 =

[
4 0
0 4

]
, where I is the identity matrix.

a. Plot the one-sigma ellipses for these two classes in the place x = [x1 x2]
T .

Solution: The one sigma ellipses are circles of radii 1 and 2 respectively (see Figure 8.)

−1 0 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

x1

x 2

Figure 1: One sigma ellipses
(MATLAB code is at the end of the problem)

b. The company finds that choosing a threshold at x1 = 3 perfectly separates the training examples
they have; thus, they propose that this should be the best classifier. Show them an expression, in
terms of x, which can improve their classifier with respect to minimizing the Bayes probability of
error. Assume that unimportant emails are three times as likely as important emails.

Solution: Using discriminant functions for each class, we have:

gi(x) = xTWix + wT
i + wi,

9

where

Wi = −1

2
Σ−1i ,

wi = Σ−1i µi, and

wi =
1

2
µT
i Σ−1i µi −

1

2
ln |Σi|+ lnP (ωi).

Because email from class ω2 is three times as likely as email from class ω1, we have:

P (ω2) = 3P (ω1), and

P (ω1) + P (ω2) = 1. Resulting in

P (ω1) =
1

4
, and

P (ω2) =
3

4
.

Then, plugging in our values to the discriminant equations, we have:

g1(x) = xT (−1

2
Σ−11)x + (Σ−11 µ1)

Tx− 1

2
µT

1 Σ−11 µ1 −
1

2
ln |Σi|+ lnP (ω1)

= −1

2
xT
[

1 0
0 1

]−1
x +

([
1 0
0 1

]−1 [
0
0

])T

x− 1

2

[
0
0

]T [
1 0
0 1

]−1 [
0
0

]
− 1

2
ln

∣∣∣∣ 1 0
0 1

∣∣∣∣+ ln
1

4

= −1

2
(x21 + x22) + ln

1

4

and

g2(x) = xT (−1

2
Σ−12)x + (Σ−12 µ2)

Tx− 1

2
µT

2 Σ−12 µ2 −
1

2
ln |Σ2|+ lnP (ω2)

= −1

2
xT
[

4 0
0 4

]−1
x +

([
4 0
0 4

]−1 [
5
0

])T

x− 1

2

[
5
0

]T [
4 0
0 4

]−1 [
5
0

]
− 1

2
ln

∣∣∣∣ 4 0
0 4

∣∣∣∣+ ln
3

4

= −1

8
(x21 + x22) +

5

4
x1 −

25

8
− 1

2
ln 16 + ln

3

4

Now, using the decision criteria, g1(x) > g2(x), to decide when to choose category ω1, we get:

−1

2
(x21 + x22) + ln

1

4
> −1

8
(x21 + x22) +

5

4
x1 −

25

8
− 1

2
ln 16 + ln

3

4

−3

8
(x21 + x22)−

5

4
x1 > −

25

8
− 1

2
ln 16 + ln

3

4
− ln

1

4

x21 + x22 +
10

3
x1 <

8

3
(
25

8
+

1

2
ln 16− ln

3

4
+ ln

1

4
)

(x1 +
5

3
)2 + x22 <

8

3
(
25

8
+

1

2
ln 16− ln

3

4
+ ln

1

4
) +

25

9

(x1 +
5

3
)2 + x22 < 3.452

So, if x is within the circle described by the above equation, then we should decide ω1.

10

c. The shape of this optimal decision boundary is:

• a line

• a parabola

• a hyperbola

• a circle

• an ellipse

• none of the above (explain)

Be sure to justify your answer.

Solution: a circle: The decision region is a circle with mean, µd = [−5
3
0]T , and radius, r = 3.45 (see

Figure 2.) This makes sense because both of the Gaussian distributions are circular, so dividing the
two distributions, such as in the following form of the discriminant function

g(x) = ln
p(x|ω1)

p(x|ω2)
+ ln

P (ω1)

P (ω2)
(1)

must also be circular.
0

0

0

x1

x 2

−1 0 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

Figure 2: Decision Boundary (λ21 = 1)

d. If Gorrel accidently misses relevant e-mails, then this will be terrible for the users. The company
estimates this error will cost them twenty times as much as the cost of missclasifying unimportant
e-mails (there’s no cost to choosing correctly in either case.) Describe qualitatively how this changes
your result above. Make a sketch of the change (it doesn’t have to be precisely plotted). Justify your
answer.

Solution: Previously, we had implicitely assumed an equal cost for making a misclassification error,
such that λ12 = 1, λ21 = 1, λ11 = 0, and λ22 = 0. Now, we must now minimize the cost function
with, λ12 = 1, λ21 = 20, λ11 = 0, and λ22 = 0. Using the minimum-risk decision rule, we can see how

11

things change when the risk is no longer equal for each type of misclassification:

(λ21 − λ11)p(x|ω1)P (ω1) > (λ12 − λ22)p(x|ω2)P (ω2)

20p(x|ω1)
1

4
> p(x|ω2)

3

4
20

3
p(x|ω1) > p(x|ω2)

We can see that this new decision relationship makes decisions favor ω1 much more than previously.
The shape of the decision boundary will now be a larger circular decision region within which we
should choose ω1 (see Figure 3.)

The new decision boundary looks as follows:

0

0

0

x1

x 2

−1 0 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

Figure 3: New Decision Boundary (λ21 = 20)

The MATLAB code that generates all of the figures is as follows:

close all;

clear all;

%Initialize parameters

mu_1 = [0 0]’;

mu_2 = [5 0]’;

Sigma_1 = [1 0; 0 1];

Sigma_2 = [4 0; 0 4];

rad_1 = sqrt(Sigma_1(1,1));

rad_2 = sqrt(Sigma_2(1,1));

%Compute points

x_points_1 = [0:100]*2/100 - 1;

x_points_1 = rad_1*x_points_1 + mu_1(1);

y_points_1 = sqrt(rad_1^2 - (x_points_1 - mu_1(1)).^2);

12

x_points_2 = [0:100]*2/100 - 1;

x_points_2 = rad_2*x_points_2 + mu_2(1);

y_points_2 = sqrt(rad_2^2 - (x_points_2 - mu_2(1)).^2);

figure;

plot(x_points_1,y_points_1+ mu_1(2),’r-’,’LineWidth’,2);

hold on;

plot(x_points_1,-y_points_1+ mu_1(2),’r-’,’LineWidth’,2);

plot(x_points_2,y_points_2+ mu_2(2),’g-’,’LineWidth’,2);

plot(x_points_2,-y_points_2+ mu_2(2),’g-’,’LineWidth’,2);

axis equal;

xlabel(’x_1’); ylabel(’x_2’);

g = inline(’X’’ *(-1/2 * iE) * X + (iE * m)’’ * X - 1/2 * m’’

* iE * m - 1/2 * log(det(E)) + log(prior) ’,’X’,’m’,’E’,’iE’,’prior’);

%Standard priors (b and c)

prior_1 = 1/4;

prior_2 = 1 - prior_1;

%Priors with missclasification costs (d)

% prior_1 = 20;

% prior_2 = 1;

%Obtain g_1 and g_2 for a grid of values

x_axis = get(gca,’xLim’); y_axis = get(gca,’yLim’);

x_vect = linspace(x_axis(1),x_axis(2),60);

y_vect = linspace(y_axis(1),y_axis(2),60);

Z_1 = zeros(length(x_vect),length(y_vect));

Z_2 = Z_1;

iSigma_1 = inv(Sigma_1);

iSigma_2 = inv(Sigma_2);

for i = 1:length(x_vect)

for j = 1:length(y_vect)

Z_1(i,j) = g([x_vect(i) y_vect(j)]’,mu_1,Sigma_1,iSigma_1,prior_1);

Z_2(i,j) = g([x_vect(i) y_vect(j)]’,mu_2,Sigma_2,iSigma_2,prior_2);

end

end

%Visualize information

[X Y] = meshgrid(x_vect, y_vect);

figure;

13

imagesc(X(:),Y(:),abs(Z_2-Z_1)’)

set(gca,’YDir’,’normal’)

hold on;

[C,h] = contour(X,Y,(Z_2-Z_1)’,[0 0]);

set(h,’ShowText’,’on’,’TextStep’,get(h,’LevelStep’)*2,’Edgecolor’,[1 1 1]);

colormap cool

plot(x_points_1,y_points_1+ mu_1(2),’r-’,’LineWidth’,2);

plot(x_points_1,-y_points_1+ mu_1(2),’r-’,’LineWidth’,2);

plot(x_points_2,y_points_2+ mu_2(2),’g-’,’LineWidth’,2);

plot(x_points_2,-y_points_2+ mu_2(2),’g-’,’LineWidth’,2);

axis equal;

xlabel(’x_1’); ylabel(’x_2’);

Problem 3: Principal Component Analysis [10 points]

Consider the covariance matrix for a Gaussian with mean = (0,0) and variance = σ2 × I2 where σ2 is a
positive constant, and I2 is a 2 × 2 identity matrix.

a. What are the two principle components for this matrix? What are their eigenvalues?

Solution: In order to compute the principal components, we have to find the eigenvalues (λ) and
eigenvectors (v) of the covariance matrix (Σ = σ2 × I2) after mean (µ) centering the data for each
attribute. Since µ = 0, we can find the eigenvalues by solving:

det(Σ− λI) = 0

det

[
σ2 − λ 0

0 σ2 − λ

]
= (σ2 − λ)2 = 0

Therefore, λ1 = λ2 = σ2 and v will be any vector that satisfies:[
σ2 0
0 σ2

]
× v = σ2 × x

To ensure orthonormality of the components, we select the following vectors v1 =
[
1 0

]T
and

v2 =
[
0 1

]T
.

b. Given a data point (x,y) from this distribution, what is the reconstructed data using the projection
onto the first principal component of this matrix?

Solution: Given the properties of our covariance matrix, both components (i.e. v1 and v2) are
equally important. If we project our data point p into v1 we obtain:

vT
1 · (p− µ) =

[
1 0

] [x
y

]
= x

14

If we reconstruct our data point, we obtain:

p̂ = v1 × x+ µ =

[
1
0

]
× x =

[
x
0

]
c. For this reconstructed value, what is the expected value of the reconstruction error (squared error

between the true value and reconstructed value).

Solution: The squared error between the true value (p) and the reconstructed value (p̂) is:

SE =
2∑
i=1

(p̂i − pi)
2 = y2

Give the properties of our covariance matrix, the expected value of SE is:

E(SE) = E(y2) = Var(y) + E(y)2 = σ2 + 0 = σ2

Problem 4: EigenFaces [30 points]

In this exercise we provide a dataset1 of face images (450x400 pixels) to explore the concept of eigenfaces
and some of its applications. Please include MATLAB code and images to support your answers.

a. Find the eigenfaces of the dataset. Show the first three components. The images can be loaded by
using the helper function “[X] = load imgs(’training’);’” in MATLAB. (Hint: svd(X,0))

Solution: Figure 4 shows the first three principal components. As we can see, they represent the
variance of the images (e.g. beard, glasses).

PC 1 PC 2 PC 3

Figure 4: First three principal components

b. Reduce the dimensionality of the images by projecting them onto a lower dimensional space. How
many basis are you using? Justify your answer.

Solution: In order to select the basis we can look at the energy associated to their eigenvalues.
Figure 5 shows the normalized eigenvalues and a standard threshold of 0.95. Note that with these
basis we reduce from 180000 (450 x 400) to just 24 dimensions.

c. We received a new image but we lost some of its information. How do you suggest to automatically
fix it? Show your solution as well as the result. (“[X] = load imgs(’corrupted’);’”)

Solution: As we saw in class, we can reduce the dimensionality of the data and then restore it to
the original dimensionality. Figure 6 shows the image before and after reconstruction.

1This is a small set of the CMU MultiPIE dataset (http://www.multipie.org)

15

5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

E
ne

rg
y

Eigenvalues

Figure 5: Normalized eigenvalues and 0.95 energy threshold

Before After

Figure 6: (Left) Original image, (right) reconstructed image

d. We received another image but this time we do not know the name of the person. Use the eigenfaces
to perform face recognition. For the sake of simplicity, you can report the closest image in the
training set instead of the name of the person. (“[X] = load imgs(’testing’);’”)

Solution: To recognize the face we can use find the closest match in the training data. To do so,
we project the image onto a lower dimensional space and compare their coefficients. Figure 7 shows
the closest match using Euclidean distance.

Testing Image Prediction

Figure 7: (Left) Testing image, (right) Closest match

e. Suggest a different way to use eigenfaces.

Solution: In class we saw that they are useful for outlier detection and data compression.

The MATLAB code for all of the previous questions is as follows:

function run_experiment()

16

%Initialize variables

global w; global h;

w = 400; h = 450;

[X] = load_imgs(’training’);

%Reduce dimensionality while preserving .95 of the energy

[W mX mu] = getPCA(X,0.95,1);

%Load and recover corrupted image

[I] = load_imgs(’corrupted’);

recover(I,mu,W,1);

%Load and make prediction image

[I] = load_imgs(’testing’);

predict(I,mu,W,mX,1);

function [P] = predict(Itest,mu,W,mX, show_info)

%Subtract the mean and project

Itest = Itest(:) - mu;

Y = W’ * mX;

ynew = W’ * Itest;

%Compute Euclidean distance

Dist = sqrt(sum((Y - repmat(ynew,1,size(Y,2))).^2));

[v ord] = sort(Dist);

%Closest Match

P = mX(:,ord(1)) + mu;

if show_info

global w; global h;

figure;

subplot(121); imagesc(reshape(Itest+mu,[h w]));

colormap gray; set(gca,’XTick’,[],’YTick’,[]);

axis equal; title(’Testing Image’);

subplot(122);imagesc(reshape(P,[h w]));

colormap gray; set(gca,’XTick’,[],’YTick’,[]);

title(’Closest Image’); axis equal;

end

17

function [rI] = recover(I,mu,W,show_info)

%In order to fill the missing information, we project I onto a lower dimensional

%space and then get it back

ynew = W’ * (I - mu);

rI = W * ynew;

%We add the mean back

rI = rI + mu;

if show_info

global w; global h;

figure;

subplot(121); imagesc(reshape(I,[h w]));

colormap gray; set(gca,’XTick’,[],’YTick’,[]);

axis equal; title(’Before’);

subplot(122);imagesc(reshape(rI,[h w]));

colormap gray; set(gca,’XTick’,[],’YTick’,[]);

title(’After’); axis equal;

end

%PCA

function [W mX mu] = getPCA(X, energy, show_info)

n = size(X,2);

%-Subtract the mean

mu = mean(X,2);

mX = X - repmat(mu,1,n);

%-There is no need to make unit variance

%because all of the features have the same scale

%-Compute projection matrix

%(eigenvalues are already sorted)

[U,S,V] = svd(mX,0);

%As we saw in class, we can the eigenvectors based on their energy

%(i.e. normalized value of its eigenvalue)

D = diag(S);

tmp = D./sum(D);

good_idx = find(cumsum(tmp)<=energy);

W = U(:,good_idx);

18

if show_info

global w; global h;

%Show first 3 eigenfaces

figure;

for i = 1:3

subplot(1,3,i);

imagesc(reshape(W(:,i),[h w]));

title(sprintf(’PC %d’,i)); colormap gray;

set(gca,’XTick’,[],’YTick’,[]); axis equal

end

%Show energy for all eigenvalues

figure;

plot(tmp);

hold on;

plot([length(good_idx) length(good_idx)],[0 max(tmp)],’r’);

xlim([1 n]);

ylabel(’Energy’);

xlabel(’Eigenvalues’);

end

Problem 5: Hidden Markov Models [20 points]

QUESTION: We have two 2-state Hidden Markov Models, where both states have two possible output
symbols A and B:
The output probabilities are given by:

Model 1: b1(A)=0.85 b1(B)=0.15 b2(A)=0.4 b2(B)=0.6

Model 2: b1(A)=0.2 b1(B)=0.8 b2(A)=0.1 b2(B)=0.9

The initial probabilities are given by:

Model 1: π1 = 0.75 π2 = 0.25

Model 2: π1 = 0.5 π2 = 0.5

a. For Model 1, what is the probability of an observation sequence { B A B } being generated? Solution:

P({ B A B } | M1)

19

Figure 8: Two HMMs

State Sequence Probability Calculation for State Sequence Total
1 1 1 0.75 * 0.15 * 0.7 * 0.85 * 0.7 * 0.15 0.007
1 1 2 0.75 * 0.15 * 0.7 * 0.85 * 0.3 * 0.6 0.012
1 2 2 0.75 * 0.15 * 0.3 * 0.4 * 1 * 0.6 0.0081
2 2 2 0.25 * 0.6 * 1 * 0.4 * 1 * 0.6 0.036
– Sum 0.0631

The probability of the observed sequence given model 1 is: 0.0631. I.e. the sum of the probabilities
of all the ways that this sequence could have occurred in model 1.

b. For Model 1, given that this HMM produced an observation sequence { B A B }, what is the most
likely sequence of hidden states that led to those observations? Solution:
Look at for max row in the table above:

2 2 2 is the most probable sequence of hidden states to produce the observed sequence given model
1.

c. Which model is more likely to produce the observation sequence { B A B }? Solution:

State Sequence Probability Calculation for State Sequence Total
1 1 1 0.5 * 0.8 * 0.6 * 0.2 * 0.6 * 0.8 0.023
1 1 2 0.5 * 0.8 * 0.6 * 0.2 * 0.4 * 0.9 0.0173
1 2 2 0.5 * 0.8 * 0.4 * 0.1 * 1 * 0.9 0.0144
2 2 2 0.5 * 0.9 * 1 * 0.1 * 1 * 0.9 0.0405
– Sum 0.0952

Model 2 is more likely to produce the observed sequence as the sum of probabilities of all the possible
ways that the sequence could occur is greater for model 2.

20

