Yet more notes on partial fraction expansion Revised Edition

The most general case of partial fraction expansion assumes you have a proper fraction with all positive powers of z (if it's not proper, carry out long division until it is; if it has negative powers multiply by z^{n} / z^{n}, where $-n$ is the highest negative power).

Let's suppose we've satisfied the above requirements, then we have an $X(z)$ that can be written as

$$
X(z)=\frac{B(z)}{A(z)}
$$

where the numerator is of order m and the denominator of order $n, m \leq n$. The first step is to factor the denominator:

$$
X(z)=\frac{B(z)}{\left(z-p_{1}\right)\left(z-p_{2}\right) \ldots\left(z-p_{n}\right)}
$$

where the p_{i} are poles of $X(z)$. Then we need to expand this into a sum of terms

$$
X(z)=c_{0}+\frac{c_{1} z}{z-p_{1}}+\frac{c_{2} z}{z-p_{2}}+\ldots+\frac{c_{n} z}{z-p_{n}}
$$

the inverse z-transform of each of which we can look up in a table.
The individual c_{i} factors are solved for as follows:

$$
c_{0}=\left.X(z)\right|_{z=0}
$$

which is actually just the ratio of the constant terms in the numerator and denominator, while for $0<i \leq n$

$$
c_{i}=\left[\frac{z-p_{i}}{z} X(z)\right]_{z=p_{i}}
$$

Example: Find $x[n]$ when

$$
X(z)=\frac{3-\frac{5}{2} z^{-1}}{1-\frac{3}{2} z^{-1}+\frac{1}{2} z^{-2}}
$$

First, we need to multiply through by z^{2} / z^{2} to make all the powers positive, leaving us with

$$
X(z)=\frac{3 z^{2}-\frac{5}{2} z}{z^{2}-\frac{3}{2} z+\frac{1}{2}}
$$

Then we factor the denominator:

$$
X(z)=\frac{3 z^{2}-\frac{5}{2} z}{\left(z-\frac{1}{2}\right)(z-1)}
$$

Now solve for the c_{i} :

$$
\begin{gathered}
c_{0}=\frac{0}{\frac{1}{2}}=0 \\
c_{1}=\left[\frac{z-\frac{1}{2}}{z} \frac{3 z^{2}-\frac{5}{2} z}{\left(z-\frac{1}{2}\right)(z-1)}\right]_{z=\frac{1}{2}}=\frac{3\left(\frac{1}{4}\right)-\frac{5}{2}\left(\frac{1}{2}\right)}{\frac{1}{2}\left(\frac{1}{2}-1\right)}=2 \\
c_{2}=\left[\frac{z-1}{z} \frac{3 z^{2}-\frac{5}{2} z}{\left(z-\frac{1}{2}\right)(z-1)}\right]_{z=1}=\frac{3-\frac{5}{2}}{1\left(1-\frac{1}{2}\right)}=1 .
\end{gathered}
$$

Thus

$$
X(z)=\frac{2 z}{z-\frac{1}{2}}+\frac{z}{z-1}
$$

which we can look up in the table to find

$$
x[n]=u[n]\left[2\left(\frac{1}{2}\right)^{n}+1^{n}\right]=u[n]\left[\left(\frac{1}{2}\right)^{n-1}+1\right] .
$$

Repeated poles: The method explained above needs an additional step when a pole appears more than once in the denominator. Suppose some pole p_{i} shows up r times, or in other words the denominator contains the expression $\left(z-p_{i}\right)^{r}$. Then the expansion requires all the terms

$$
\frac{c_{i_{1}} z}{z-p_{i}}+\frac{c_{i_{2}} z^{2}}{\left(z-p_{i}\right)^{2}}+\ldots+\frac{c_{i_{r}} z^{r}}{\left(z-p_{i}\right)^{r}}
$$

which can be iteratively (tediously) solved for as

$$
\begin{gathered}
c_{i_{r}}=\left[\frac{\left(z-p_{i}\right)^{r}}{z^{r}} X(z)\right]_{z=p_{i}} \\
c_{i_{(r-1)}}=\left\{\frac{\left(z-p_{i}\right)^{r-1}}{z^{r-1}}\left[X(z)-\frac{c_{i_{r}} z^{r}}{\left(z-p_{i}\right)^{r}}\right]\right\}_{z=p_{i}} \\
c_{i_{(r-2)}}=\left\{\frac{\left(z-p_{i}\right)^{r-2}}{z^{r-2}}\left[X(z)-\frac{c_{i_{r}} z^{r}}{\left(z-p_{i}\right)^{r}}-\frac{c_{i_{(r-1)}} z^{r-1}}{\left(z-p_{i}\right)^{r-1}}\right]\right\}_{z=p_{i}}
\end{gathered}
$$

and so on. Note that you must simplify the expressions inside the braces before doing the $z=p_{i}$ substitution; if you don't, and if there are any $\left(z-p_{i}\right)$ denominators, you will find it difficult to evaluate the result correctly.

