
MAS160: Signals, Systems & Information for Media Technology

Problem Set 6

DUE: November 12, 2003

Instructors: V. Michael Bove, Jr. and Rosalind Picard T.A. Jim McBride

Problem 1: Frequency response of FIR filters (DSP First 6.4)

SOLUTION :

(a)

H(ω̂) =
M∑

k=0

h[k]e−jω̂k

= 2e−jω̂0 − 3e−jω̂1 + 2e−jω̂2

= 2− 3e−jω̂ + 2e−jω̂2

= e−jω̂
(

2e−jω̂ − 3 + 2e−jω̂
)

= e−jω̂ (−3 + 4 cos(ω̂))

|H(ω̂)| = |−3 + 4 cos(ω̂)|
∠H(ω̂) = −ω̂

(b) H(ω̂) has a period of 2π.
(c) See figure 1
(d)

−3 + 4 cos(ω̂) = 0

cos(ω̂) =
3
4

ω̂ = cos−1

(
3
4

)

≈ ±0.7227± 2πk radians, k integer

(e) Since x[n] = sin( π13n), we need only evaluate the frequency response H(ω̂) at ω̂ = π
13 :

H
( π

13

)
= e−jπ/13

(
−3 + 4 cos

( π
13

))

≈ 0.8838e−jπ/13
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Figure 1: Frequency Response of y[n] = 2x[n]− 3x[n− 1] + 2x[n− 2]

Therefore, the magnitude is |H( π13)| ≈ 0.8838| and the phase is ∠|H( π13)| = − π
13 , so

the output y[n] is:

y[n] = 0.8838 sin
( π

13
n− π

13

)

= 0.8838 cos
( π

13
n− π

13
− π

2

)

= 0.8838 cos
( π

13
(n− 1)− π

2

)

= 0.8838 cos
(
π

13
n− 15π

26

)
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Problem 2: Simple sound filtering

Using our old friend the sumcos function, create a sound with a fundamental frequency
of 440 Hz, with 12 harmonics of equal amplitude and zero phase, and using the following
parameters:

fs = 11025; % Sets sampling rate to 11025 Hz
f = 440*[1:12]; % Creates frequency vector of 12 harmonics of 440 Hz
X = ones(1,12); % Creates amplitudes of 1
dur = 1; % Sets duration to be 1 sec

Use MATLAB to perform the following tasks:

(a) Create a three-point averaging FIR filter and plot the frequency response (magnitude
and phase) of this filter using freqz. What is this filter supposed to do? Filter the
sound you created above with this filter. How does it compare to the original sound?

(b) Create a two-point first difference FIR filter and plot the frequency response (magni-
tude and phase) of this filter using freqz. What is this filter supposed to do? Filter
the original sound you created above using this new filter. How does it compare to
the original sound?

SOLUTION :

PS 6-3



Signals, Systems & Information : Problem Set 6 Solutions PS 6-4

(a) This is a low-pass filter designed to filter out high frequencies. You should hear it
attenuate the higher frequencies in your sound, much like turning down the treble
control on your stereo.
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Figure 2: Averaging Filter
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(b) This is a high-pass filter designed to filter out low frequencies. You should hear it
attenuate the lower frequencies in your sound, much like turning down the bass control
on your stereo.
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Figure 3: Differencing Filter
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Problem 3: Return of the Labs: DSP First Lab 5

Items to be turned in:

(a) Plots and answers to questions specified in C.5.2.1.
(b) Plots and answers to questions specified in C.5.3.2.
(c) Demonstrate linearity and time-invariance of filter (C.5.3.3 and C.5.3.4).
(d) Plots and answers to questions specified in C.5.3.5.

SOLUTION :

(a) C.5.2.1 Frequency Response of the 3-Point Averager

(1) The impulse response of a three-point averager is simply:

h[k] =
1
3
δ[k] +

1
3
δ[k − 1] +

1
3
δ[k − 2]

The frequency response can be calculated as follows:

H(ω̂) =
M∑

k=0

h[k]e−jω̂k

=
1
3
e−jω̂0 +

1
3
e−jω̂1 +

1
3
e−jω̂2

=
1
3

+
1
3
e−jω̂ +

1
3
e−jω̂2

=
1
3
e−jω̂

(
e−jω̂ + 1 + e−jω̂

)

=
2 cos(ω̂) + 1

3
e−jω̂
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(2) The following code computes this frequency response directly in MATLAB:

function 3ptlowpass()

w = -pi:pi/128:pi;
h = freqz([1/3 1/3 1/3],1,w);

subplot(2,1,1)
plot(w,abs(h))
axis([-pi pi 0 1])
set(gca,’XTick’,[-pi:pi/4:pi]);
set(gca,’XTickLabel’,’|-3/4|-/2|-/4|0|/4|/2|3/4|’);
%set(get(gca,’XTickLabel’))
grid
title(’Magnitude of frequency response of 3-pt averaging filter’)

subplot(2,1,2)
plot(w,angle(h))
axis([-pi pi -pi pi])
set(gca,’XTick’,[-pi:pi/4:pi]);
set(gca,’XTickLabel’,’-|-3/4|-/2|-/4|0|/4|/2|3/4|’);
set(gca,’YTick’,[-pi:pi/2:pi]);
set(gca,’YTickLabel’,’-|-/2|0|/2|’);
grid
title(’Phase angle of frequency response of 3-pt averaging filter’)
xlabel(’Frequency (radians)’)
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The following plots are generated:
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Figure 4: Averaging Filter (again)

(3) The magnitude and phase plots generated computing H(ω̂) directly and using
freqz to evaluate the response are identical.
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(b) C.5.3.2 First-Difference Filter

(1) x[n] and y[n] are not the same length because the filtering is performed via convo-
lution, resulting in a signal length that is the sum of the individual signal lengths
minus one (N +M − 1).

(2)
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Figure 5: First Order Differencing (Time Domain)

(3) From the plot, it appears that the amplitude of x[n] = 7. The phase is approxi-
mately 3 samples which gives us 3(0.125π) ≈ π

3 .

(4) The filter takes the difference between adjacent samples. Since x[n] is zero for
n < 0, y[0] is the result of a much greater difference than other values of y[n].

(5) The frequency is remains the same, ω̂ = 0.125π. The amplitude is approximately
14, and the phase is approximately 6 samples, which gives us 6(0.125π) = 3

4π.

(6) At the input frequency ω̂ = 0.125π, the filter seems to do the following:

Amplitude ≈ 14
7

= 2

Phase ≈ 3π
4
− π

3
=

5π
12
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(7)

H(ω̂) = 5e−jω̂0 − 5e−jω̂1

= 5e−jω̂/2(ejω̂/2 − e−jω̂/2)

= 5e−jω̂/22j sin(ω̂/2)

= 10e−j(ω̂−π)/2 sin(ω̂/2)
|H(0.125π)| = 10 sin(0.125π/2)

≈ 1.951
∠H(0.125π) = −(0.125π − π)/2

=
7
16
π

(c) C.5.3.3 Linearity and time invariance of the Filter

(1)
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Figure 6: Checking Linearity

From the plot, the amplitude of xa[n] is approximately 14 and the amplitude of
ya[n] is approximately 28. The phase of xa[n] is π

3 and the phase of ya[n] is about
6 samples, which is 6(0.125π) = 3

4π. Thus relative change in amplitude is still
approximately 2, and the relative change in phase is still 5

12π ≈ 7
16π.

(2) The amplitude of xb[n] is 8 and its phase is 0. The amplitude of yb[n] is approx-
imately 32 and its phase is about 1.5 samples, which is 1.5(0.25π) = 3

8π. Thus
the relative change in amplitude is 4, and the relative change in phase is 3

8π.

(3) yc[n] is identical to ya[n] + yb[n], demonstrating that the filter is indeed linear.
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(4) It is clear from the plot that y[n] must also be shifted to the right by 3 samples
to be equal to ys[n], which demonstrates that the filter is time-invariant.
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Figure 7: Checking Shift Invariance
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(d) Cascading Two-Systems
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Figure 8: Cascading (Time Domain)
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(3) Recall that cos2 θ = 1
2(1 + cos 2θ). From this equation, we see that the squaring

operation doubles the frequency and adds a constant (0 frequency) term as well.
(From this equation you can also see that squaring doubles the phase as well.)
This frequency doubling is apparent in the plot of w[n]. Our input x[n] has a fre-
quency of 0.125π = π

8 . The squaring process doubles that frequency to 0.25π = π
4 ,

and adds a constant term (0 frequency), and squares the magnitude as well.
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Figure 9: Cascading (Frequency Domain)
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(4) Yes, as can be seen in figure 8 the period of x[n] is around 15. The period of
w[n] is around 8.

(5) At the frequencies of w[n], the first-difference filter has a magnitude response of:

|H(0)| = 2 sin(0/2) = 0
|H(0.25π)| = 2 sin(0.25π/2) ≈ 0.7654

So y[n] removes the constant (0 frequency term) and has a magnitude of (0.7654)(49/2) ≈
20 due to the frequency of 0.25π in w[n].
As we showed above, the first-difference filter has a linear phase of −(ω̂ − π)/2.
Since our input signal x[n] has a phase of π

3 , the squaring operation doubles it to
2π
3 . The first-difference filter then changes the phase to be:

2π
3
− 0.25π − π

2
=

25π
24

(6) Now we replace the first-difference filter with the second-order FIR filter y2[n] =
w[n] − 2cos(0.25π)w[n − 1] + w[n − 2]. There are no frequencies present in the
output signal because the filter is designed to have zero magnitude at ω̂ = π

4 .
When the input to the filter is w[n] = (x[n])2, all that remains is the constant
(0 frequency) term. When w[n] = ej0.25πn, the resulting output is zero. The
spectrum of y2[n] in this case is simply zero as well.
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Figure 10: Second Order Differencing
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Problem 4: Additional Problem (for MAS.510)

The matlab function zplane is great for plotting the poles and zeros of a system in the
z-plane. Use zplane as well as freqz to answer the following questions.

(a) Consider the general N -point FIR averaging filter, where each coefficient bk is simply
1
N . Plot the zeros of this system in the z-plane as well as the frequency response
(magnitude and phase) for N = 3, 4, 5, and 10. How does the position of the zeros
change? Qualitatively, how does the frequency response change, and how does this
relate to the location of the zeros? Does N being an even or odd number have any
effect?

(b) Consider the general N -point FIR difference filter, where each coefficient bk is simply
(−1)k

N . Plot the zeros of this system in the z-plane as well as the frequency response
(magnitude and phase) for N = 3, 4, 5, and 10. How does the position of the zeros
change? Qualitatively, how does the frequency response change, and how does this
relate to the location of the zeros? Does N being an even or odd number have any
effect?

SOLUTION :
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(a) The zeros are evenly spaced around the unit circle (except at z = 1, making this a
low-pass filter). The more zeros that are added, the narrower the pass region of the
filter. If N is even, there is a zero at z = −1 (maximum frequency), but if N is odd,
there is not.
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Figure 11: Zeros of Averaging Filters
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Figure 12: Frequency Response of Averaging Filters
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(b) The zeros are evenly spaced around the unit circle (except at z = −1, making this a
high-pass filter). Again, the more zeros that are added, the narrower the pass region
of the filter. If N is even, there is a zero at z = 1 (zero frequency), but if N is odd,
there is not.
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Figure 13: Zeros of Differencing Filters
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Figure 14: Frequency Response of Averaging Filters
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