$\square$
MAS160: Signals, Systems \& Information for Media Technology
Problem Set 7

Instructor : V. Michael Bove, Jr.

## Problem 1: z-Transforms, Poles, and Zeros

Determine the $z$-transforms of the following signals. Sketch the corresponding pole-zero patterns.
(a) $x[n]=\delta[n-5]$
(b) $x[n]=n u[n]$
(c) $x[n]=\left(-\frac{1}{3}\right)^{n} u[n]$
(d) $x[n]=\left(a^{n}+a^{-n}\right) u[n], a$ real
(e) $x[n]=\left(n a^{n} \cos \omega_{0} n\right) u[n], a$ real
(f) $x[n]=\left(\frac{1}{2}\right)^{n}(u[n-1]-u[n-10])$

## SOLUTION :

(a)

$$
\begin{aligned}
\delta[n-5] & \xrightarrow{Z} \sum_{n=-\infty}^{\infty} \delta[n-5] z^{-n} \\
& =\delta[5-5] z^{-5} \\
& =z^{-5}
\end{aligned}
$$

ROC : all $z$, except $z=0$.


Figure 1: z-plane plot for (a) $x[n]=\delta[n-5]$
(b)

$$
\begin{aligned}
n u[n] & \xrightarrow{Z} \sum_{n=-\infty}^{\infty} n u[n] z^{-n}=X(z) \\
X(z) & =z^{-1}+2 z^{-2}+3 z^{-3}+4 z^{-4}+\ldots \\
-z^{-1} X(z) & =-z^{-2}-2 z^{-3}-3 z^{-4}-\ldots \\
\left(1-z^{-1}\right) X(z) & =-1+1+z^{-1}+z^{-2}+z^{-3}+z^{-4}+\ldots \\
& =-1+\frac{1}{1-z^{-1}} \\
& =\frac{z^{-1}}{1-z^{-1}} \\
X(z) & =\frac{z^{-1}}{\left(1-z^{-1}\right)^{2}}
\end{aligned}
$$

$$
R O C:\left|z^{-1}\right|<1 \Rightarrow|z|>1
$$



Figure 2: z-plane plot for (b) $x[n]=n u[n]$
(c)

$$
\begin{aligned}
\left(-\frac{1}{3}\right)^{n} u[n] & \xrightarrow{Z} \sum_{n=-\infty}^{\infty}\left(-\frac{1}{3}\right)^{n} u[n] z^{-n} \\
& =\sum_{n=0}^{\infty}\left(-\frac{1}{3}\right)^{n} z^{-n} \\
& =\sum_{n=0}^{\infty}\left(-\frac{1}{3} z^{-1}\right)^{n} \\
& =\frac{1}{1+\frac{1}{3} z^{-1}}
\end{aligned}
$$

$R O C:\left|\frac{1}{3} z^{-1}\right|<1 \Rightarrow|z|>\frac{1}{3}$


Figure 3: z-plane for (c) $x[n]=\left(-\frac{1}{3}\right)^{n} u[n]$
(d)

\[

\]

ROC : $|z|>\max \left\{a, \frac{1}{a}\right\}$. For example, at $a=2$ :


Figure 4: z-plane for (d) $x[n]=\left(a^{n}+a^{-n}\right) u[n], a$ real
(e) Since $n x[n] \xrightarrow{Z}-z \frac{d}{d z} X(z)$, first find the $z$-Transform of $x[n]=a^{n} \cos \left(\omega_{0} n\right) u[n]$ :

$$
\begin{aligned}
\left(a^{n} \cos \left(\omega_{0} n\right)\right) u[n] & \xrightarrow{Z} \sum_{n=-\infty}^{\infty}\left(a^{n} \cos \left(\omega_{0} n\right)\right) u[n] z^{-n} \\
& =\sum_{n=0}^{\infty} a^{n} \cos \left(\omega_{0} n\right) z^{-n} \\
& =\sum_{n=0}^{\infty} a^{n} \frac{1}{2}\left(e^{j \omega_{0} n}+e^{-j \omega_{0} n}\right) z^{-n} \\
& =\frac{1}{2}\left[\sum_{n=0}^{\infty}\left(a e^{j \omega_{0}} z^{-1}\right)^{n}+\sum_{n=0}^{\infty}\left(a e^{-j \omega_{0}} z^{-1}\right)^{n}\right] \\
& =\frac{1}{2}\left[\frac{1}{1-a e^{j \omega_{0}} z^{-1}}+\frac{1}{1-a e^{-j \omega_{0}} z^{-1}}\right] \\
& =\frac{1}{2}\left[\frac{1-a e^{j \omega_{0}} z^{-1}+1-a e^{-j \omega_{0}} z^{-1}}{1-a e^{j \omega_{0}} z^{-1}-a e^{-j \omega_{0} z^{-1}+a^{2} z^{-2}}}\right] \\
& =\frac{1}{2}\left[\frac{2-a z^{-1}\left(e^{j \omega_{0}}+e^{-j \omega_{0}}\right)}{1-a z^{-1}\left(e^{j \omega_{0}}+e^{-j \omega_{0}}\right)+a^{2} z^{-2}}\right] \\
& =\frac{1-a z^{-1} \cos \omega_{0}}{1-2 a z^{-1} \cos \omega_{0}+a^{2} z^{-2}} \\
& =\frac{z^{2}-a z \cos \omega_{0}}{z^{2}-2 a z \cos \omega_{0}+a^{2}}
\end{aligned}
$$

Now we take the derivative and multiply by $-z$ :

$$
\begin{aligned}
X(z) & =-z \frac{d}{d z}\left(\frac{z^{2}-a z \cos \omega_{0}}{z^{2}-2 a z \cos \omega_{0}+a^{2}}\right) \\
& =-z\left(\frac{\left(z^{2}-2 a z \cos \omega_{0}+a^{2}\right)\left(2 z-a \cos \omega_{0}\right)-\left(z^{2}-a z \cos \omega_{0}\right)\left(2 z-2 a \cos \omega_{0}\right)}{\left(z^{2}-2 a z \cos \omega_{0}+a^{2}\right)^{2}}\right) \\
& =z\left(\frac{z^{2} a \cos \omega_{0}-2 z a^{2}+a^{3} \cos \omega_{0}}{\left(z^{2}-2 a z \cos \omega_{0}+a^{2}\right)^{2}}\right)
\end{aligned}
$$

We can solve for the poles and zeros using the quadratic formula:

$$
\begin{aligned}
\text { poles: } z & =\frac{2 a \cos \omega_{0} \pm \sqrt{4 a^{2} \cos ^{2} \omega_{0}-4 a^{2}}}{2} \\
& =a\left(\cos \omega_{0} \pm \sqrt{\cos ^{2} \omega_{0}-1}\right) \\
& =a\left(\cos \omega_{0} \pm j \sin \omega_{0}\right) \\
\text { zeros: } z & =0 \\
z & =\frac{2 a^{2} \pm \sqrt{4 a^{4}-4 a^{4} \cos ^{2} \omega_{0}}}{2 a \cos \omega_{0}} \\
& =\frac{a \pm a \sin \omega_{0}}{\cos \omega_{0}} \\
& =\frac{a\left(1 \pm \sin \omega_{0}\right)}{\cos \omega_{0}}
\end{aligned}
$$

ROC : $|z|>|a|$. For example, at $a=\frac{1}{2}$ and $\omega_{0}=\frac{\pi}{4}$ :


Figure 5: z-plane for (e) $x[n]=\left(n a^{n} \cos \omega_{0} n\right) u[n], a$ real
(f)

$$
\begin{aligned}
\left(\frac{1}{2}\right)^{n}(u[n-1]-u[n-10]) & \xrightarrow{Z} \sum_{n=-\infty}^{\infty}\left(\frac{1}{2}\right)^{n}(u[n-1]-u[n-10]) z^{-n} \\
& =\sum_{n=1}^{9}\left(\frac{1}{2}\right)^{n} z^{-n} \\
& =\frac{\frac{1}{2} z^{-1}-\left(\frac{1}{2} z^{-1}\right)^{10}}{1-\frac{1}{2} z^{-1}} \\
& =\frac{\frac{1}{2} z^{-1}\left(1-\left(\frac{1}{2} z^{-1}\right)^{9}\right)}{1-\frac{1}{2} z^{-1}}
\end{aligned}
$$

ROC : The pole and zero at $z=\frac{1}{2}$ cancel $\rightarrow$ all $z$, except $z=0$.


Figure 6: z-plane for (f) $x[n]=\left(\frac{1}{2}\right)^{n}(u[n-1]-u[n-10])$

## Problem 2: $z$-Transform Properties

Given $x[n]$ below, use the properties of the $z$-transform to derive the transform of the following signals.

$$
x[n] \rightarrow X(z)=\frac{z^{-1}}{\left(1-z^{-1}\right)^{2}}
$$

(a) $x[n-3]$
(b) $x[n] * \delta[n-3]$
(c) $x[n]-x[n-1]$
(d) $x[n] *(\delta[n]-\delta[n-1])$
(e) $5 x[n-1]+4\left(-\frac{1}{3}\right)^{n} u[n]$

SOLUTION :
(a)

$$
\begin{aligned}
x[n-3] & \xrightarrow{Z} X(z) z^{-3} \\
& =\frac{z^{-4}}{\left(1-z^{-1}\right)^{2}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
x[n] * \delta[n-3] & \xrightarrow{Z} X(z) z^{-3} \\
& =\frac{z^{-4}}{\left(1-z^{-1}\right)^{2}}
\end{aligned}
$$

(c)

$$
\begin{aligned}
x[n]-x[n-1] & \xrightarrow{Z} X(z)-X(z) z^{-1} \\
& =X(z)\left(1-z^{-1}\right) \\
& =\frac{z^{-1}}{1-z^{-1}}
\end{aligned}
$$

(d)

$$
\begin{aligned}
x[n] *(\delta[n]-\delta[n-1]) & \xrightarrow{Z} X(z)\left(1-z^{-1}\right) \\
& =\frac{z^{-1}}{1-z^{-1}}
\end{aligned}
$$

(e)

$$
\begin{aligned}
5 x[n-1]+4\left(-\frac{1}{3}\right)^{n} u[n] & \xrightarrow[\longrightarrow]{ } 5 X(z) z^{-1}+4\left(\frac{1}{1+\frac{1}{3} z^{-1}}\right) \quad \text { from (1c) above } \\
& =\frac{5 z^{-2}}{\left(1-z^{-1}\right)^{2}}+\frac{4}{1+\frac{1}{3} z^{-1}}
\end{aligned}
$$

# Problem 3: Relating pole-zero plots to frequency- and impulseresponse 

(a) DSP First 8.16
(b) DSP First 8.17

## SOLUTION :

(a) (a) From the magnitude frequency response, we see that $A$ is a high-pass filter, with six zeros along the frequency axis (i.e. the unit circle). Only two of the polezero plots have six zeros on the unit circle (PZ1 and PZ2). From the pole-zero plots, we see PZ1 is a low-pass filter (the zeros are concentrated towards higher frequency), while the zeros of PZ2 are concentrated towards lower frequencies (making it a high-pass filter). Therefore frequency response $A$ corresponds to pole-zero plot PZ2.
(b) B is a high-pass filter, with a sharp peak near maximum frequency ( $\pi$ ) and a zero at zero frequency. This means that there is a pole near the unit circle at $\omega=\pi$ and $a$ zero on the unit circle at $\omega=0 \quad(z=1)$. Therefore, the corresponding pole-zero plot is PZ5.
(c) $C$ is a low-pass filter, with six zeros along the frequency axis, corresponding to pole-zero plot PZ1.
(d) $D$ is a very sharp band-bass filter, indicating poles close to the unit circle at $\omega= \pm \frac{\pi}{2}$. This is consistent with pole-zero plot PZ6.
(e) E is a somewhat complex response, with sharp peaks (indicating poles close to the unit circle) at a low frequency and somewhat smoother peaks at higher frequencies (indicating poles a little bit further from the unit circle). This pattern indicates pole-zero plot PZ3.
(b) (a) The first thing to notice about $J$ is that it is an infinite impulse response, and therefore has a pole somewhere other than at zero or $\infty$. It's shape (exponential decay), is consistent with a form $h[n]=a^{n} u[n]$, which is a single-pole system with a pole at $z=a$. And we know from the impulse response that in this case, $a$ is positive, which also indicates a low-pass response. Therefore, the corresponding pole-zero plot is PZ4.
(b) $K$ is FIR, with a length of $7(N=6)$ and therefore has six zeros and poles only at zero or $\infty$. Since each point of the impulse response alternates signs, it is a high-pass filter. All of this leads us to pole-zero plot PZ2.
(c) L is IIR, with alternating signs but with zero values in between each alternation. This indicates a band-pass response, centered at a frequency one-half of the maximum frequency (i.e. $\frac{\pi}{2}$ ). This leads us to pole-zero plot PZ6. However, I believe that the correct pole-zero plot would not have a zero at $z=1$. Using the $P e Z$ tool in mATLAB, if you try plotting the impulse response of a pole-zero pattern corresponding to PZ6, you'll get something different, but if you remove the zero at $z=1$, you obtain impulse response $L$.
(d) $M$ is IIR and clearly has a complicated frequency response. From the alternation of signs in the impulse response, we can see that it has both high-pass and bandpass characteristics. Therefore, the corresponding pole-zero plot is PZ3.
(e) $N$ is $\operatorname{FIR}(N=6)$ and is an averaging (low-pass) filter, and thus corresponds to $P Z 1$.

## Problem 4: DSP First Lab 10

Items to be turned in:
(a) Answers to questions from C.10.4.
(b) Answers to questions from C.10.5.
(c) Plots and answers to questions from C.10.6.

## SOLUTION:

(a) Moving the pole from $z=0.5$ to the origin changes the impulse response to be just an impulse, creating an all-pass filter (flat magnitude response) that essentially does nothing (like multiplying by 1). Moving the pole closer to the unit circle creates a very sharp low-pass filter and slows the rate of decay of the impulse response. Putting the pole on the unit circle gives us an impulse response of $u[n]$, which is unstable, but gives a very sharp (impulse-like) low-pass filter. Moving the pole outside the unit circle results in an unstable impulse response $h[n]$.
(b) If the determinant ( $a_{1}^{2}-4 a_{2}$ : the factor under the square root in the quadratic formula) is less than zero, the roots of the polynomial will be a complex conjugate pair.

$$
\begin{aligned}
H(z) & =\frac{B(z)}{A(z)} \\
& =G \frac{\left(1-0 z^{-1}\right)\left(1-0 z^{-1}\right)}{\left(1-0.75 e^{j \pi / 4} z^{-1}\right)\left(1-0.75 e^{-j \pi / 4} z^{-1}\right)} \\
& =\frac{G}{\left(1-0.75 e^{j \pi / 4} z^{-1}\right)\left(1-0.75 e^{-j \pi / 4} z^{-1}\right)}
\end{aligned}
$$

Placing the poles at $z=0.75 e^{ \pm j \pi / 4}$ results in a band-pass filter, with the pass-band centered at $\pm \pi / 4$. Changing the angle of the pole correspondingly changes the location of the pass-band. The variation in the impulse response also increases with increasing pole angle. Increasing the magnitude of the pole makes the pass-band sharper (narrower and taller), and decreases the rate of decay of the impulse response, $h[n]$. Going outside the unit circle, of course, results in an unstable filter.
(c) A pole at the origin results in an impulse response of a delayed impulse, a flat magnitude response, and a linear phase response. Adding poles at the origin increases the delay in the impulse response (still a delayed impulse), leaves the magnitude response flat, and increases the slope of the phase response.
Zeros at $z=-1, \pm j$ result in a 4 -pt. averaging (low-pass) filter. The phase response is $-\frac{3 \omega}{2}$.
To get the the desired FIR response, the zeros should be at $z= \pm j$. To get the desired IIR response, the poles should be at $z= \pm 0.9 j$. The cascaded system has the following magnitude response:


Figure 7: Response of a notch filter
The notches result from the zeros dominating over the poles the closer we get to $\hat{\omega}= \pm \frac{\pi}{2}$. The gain is the same at $\hat{\omega}=0$ and $\hat{\omega}=\pi$ since those points are equidistant from the zeros and poles.

