
MAS160: Signals, Systems & Information for Media Technology

Problem Set 7

DUE: November 19, 2003

Instructors: V. Michael Bove, Jr. and Rosalind Picard T.A. Jim McBride

Problem 1: z-Transforms, Poles, and Zeros

Determine the z-transforms of the following signals. Sketch the corresponding pole-zero
patterns.

(a) x[n] = δ[n− 5]
(b) x[n] = nu[n]
(c) x[n] =

(−1
3

)n
u[n]

(d) x[n] = (an + a−n)u[n], a real
(e) x[n] = (nan cosω0n)u[n], a real
(f) x[n] =

(
1
2

)n (u[n− 1]− u[n− 10])

SOLUTION :
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(a)

δ[n− 5] Z−→
∞∑

n=−∞
δ[n− 5]z−n

= δ[5− 5]z−5

= z−5

ROC : all z, except z = 0.
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Figure 1: z-plane plot for (a) x[n] = δ[n− 5]
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(b)

nu[n] Z−→
∞∑

n=−∞
nu[n]z−n = X(z)

X(z) = z−1 + 2z−2 + 3z−3 + 4z−4 + ...

−z−1X(z) = −z−2 − 2z−3 − 3z−4 − ...
(1− z−1)X(z) = −1 + 1 + z−1 + z−2 + z−3 + z−4 + ...

= −1 +
1

1− z−1

=
z−1

1− z−1

X(z) =
z−1

(1− z−1)2

ROC : |z−1| < 1⇒ |z| > 1
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Figure 2: z-plane plot for (b) x[n] = nu[n]
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(c)

(
−1

3

)n
u[n] Z−→

∞∑
n=−∞

(
−1

3

)n
u[n]z−n

=
∞∑

n=0

(
−1

3

)n
z−n

=
∞∑

n=0

(
−1

3
z−1

)n

=
1

1 + 1
3z
−1

ROC : |13z−1| < 1⇒ |z| > 1
3
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Figure 3: z-plane for (c) x[n] =
(−1

3

)n
u[n]
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(d)

(an + a−n)u[n] Z−→
∞∑

n=−∞
(an + a−n)u[n]z−n

=
∞∑

n=0

(an + a−n)z−n

=
∞∑

n=0

(az−1)n +
∞∑

n=0

(a−1z−1)n

=
1

1− az−1
+

1
1− a−1z−1

=
1− a−1z−1 + 1− az−1

(1− az−1)(1− a−1z−1)

=
2−

(
a2+1
a

)
z−1

(1− az−1)(1− a−1z−1)

ROC : |z| > max {a, 1
a}. For example, at a = 2:
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Figure 4: z-plane for (d) x[n] = (an + a−n)u[n], a real
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(e) Since nx[n] Z−→ −z d
dzX(z), first find the z-Transform of x[n] = an cos(ω0n)u[n]:

(an cos(ω0n))u[n] Z−→
∞∑

n=−∞
(an cos(ω0n))u[n]z−n

=
∞∑

n=0

an cos(ω0n)z−n

=
∞∑

n=0

an
1
2
(
ejω0n + e−jω0n

)
z−n

=
1
2

[ ∞∑

n=0

(aejω0z−1)n +
∞∑

n=0

(ae−jω0z−1)n
]

=
1
2

[
1

1− aejω0z−1
+

1
1− ae−jω0z−1

]

=
1
2

[
1− aejω0z−1 + 1− ae−jω0z−1

1− aejω0z−1 − ae−jω0z−1 + a2z−2

]

=
1
2

[
2− az−1(ejω0 + e−jω0)

1− az−1(ejω0 + e−jω0) + a2z−2

]

=
1− az−1 cosω0

1− 2az−1 cosω0 + a2z−2

=
z2 − az cosω0

z2 − 2az cosω0 + a2

Now we take the derivative and multiply by −z:

X(z) = −z d
dz

(
z2 − az cosω0

z2 − 2az cosω0 + a2

)

= −z
(

(z2 − 2az cosω0 + a2)(2z − a cosω0)− (z2 − az cosω0)(2z − 2a cosω0)
(z2 − 2az cosω0 + a2)2

)

= z

(
z2a cosω0 − 2za2 + a3 cosω0

(z2 − 2az cosω0 + a2)2

)
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We can solve for the poles and zeros using the quadratic formula:

poles: z =
2a cosω0 ±

√
4a2 cos2 ω0 − 4a2

2
= a(cosω0 ±

√
cos2 ω0 − 1)

= a(cosω0 ± j sinω0)

zeros: z = 0

z =
2a2 ±√4a4 − 4a4 cos2 ω0

2a cosω0

=
a± a sinω0

cosω0

=
a(1± sinω0)

cosω0

ROC : |z| > |a|. For example, at a = 1
2 and ω0 = π

4 :
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Figure 5: z-plane for (e) x[n] = (nan cosω0n)u[n], a real
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(f)

(
1
2

)n
(u[n− 1]− u[n− 10]) Z−→

∞∑
n=−∞

(
1
2

)n
(u[n− 1]− u[n− 10])z−n

=
9∑

n=1

(
1
2

)n
z−n

=
1
2z
−1 − (1

2z
−1
)10

1− 1
2z
−1

=
1
2z
−1
(

1− (1
2z
−1
)9)

1− 1
2z
−1

ROC : The pole and zero at z = 1
2 cancel → all z, except z = 0.
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Figure 6: z-plane for (f) x[n] =
(

1
2

)n (u[n− 1]− u[n− 10])
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Problem 2: z-Transform Properties

Given x[n] below, use the properties of the z-transform to derive the transform of the
following signals.

x[n]→ X(z) =
z−1

(1− z−1)2

(a) x[n− 3]
(b) x[n] ∗ δ[n− 3]
(c) x[n]− x[n− 1]
(d) x[n] ∗ (δ[n]− δ[n− 1])
(e) 5x[n− 1] + 4

(−1
3

)n
u[n]

SOLUTION :

(a)

x[n− 3] Z−→ X(z)z−3

=
z−4

(1− z−1)2

(b)

x[n] ∗ δ[n− 3] Z−→ X(z)z−3

=
z−4

(1− z−1)2

(c)

x[n]− x[n− 1] Z−→ X(z)−X(z)z−1

= X(z)(1− z−1)

=
z−1

1− z−1

(d)

x[n] ∗ (δ[n]− δ[n− 1]) Z−→ X(z)(1− z−1)

=
z−1

1− z−1

(e)

5x[n− 1] + 4
(
−1

3

)n
u[n] Z−→ 5X(z)z−1 + 4

(
1

1 + 1
3z
−1

)
from (1c) above

=
5z−2

(1− z−1)2
+

4
1 + 1

3z
−1
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Problem 3: Relating pole-zero plots to frequency- and impulse-
response

(a) DSP First 8.16
(b) DSP First 8.17

SOLUTION :

(a) (a) From the magnitude frequency response, we see that A is a high-pass filter, with
six zeros along the frequency axis (i.e. the unit circle). Only two of the pole-
zero plots have six zeros on the unit circle (PZ1 and PZ2). From the pole-zero
plots, we see PZ1 is a low-pass filter (the zeros are concentrated towards higher
frequency), while the zeros of PZ2 are concentrated towards lower frequencies
(making it a high-pass filter). Therefore frequency response A corresponds to
pole-zero plot PZ2.

(b) B is a high-pass filter, with a sharp peak near maximum frequency (π) and a zero
at zero frequency. This means that there is a pole near the unit circle at ω = π
and a zero on the unit circle at ω = 0 (z = 1). Therefore, the corresponding
pole-zero plot is PZ5.

(c) C is a low-pass filter, with six zeros along the frequency axis, corresponding to
pole-zero plot PZ1.

(d) D is a very sharp band-bass filter, indicating poles close to the unit circle at
ω = ±π

2 . This is consistent with pole-zero plot PZ6.

(e) E is a somewhat complex response, with sharp peaks (indicating poles close to the
unit circle) at a low frequency and somewhat smoother peaks at higher frequencies
(indicating poles a little bit further from the unit circle). This pattern indicates
pole-zero plot PZ3.

(b) (a) The first thing to notice about J is that it is an infinite impulse response, and
therefore has a pole somewhere other than at zero or ∞. It’s shape (exponential
decay), is consistent with a form h[n] = anu[n], which is a single-pole system with
a pole at z = a. And we know from the impulse response that in this case, a is
positive, which also indicates a low-pass response. Therefore, the corresponding
pole-zero plot is PZ4.

(b) K is FIR, with a length of 7 (N = 6) and therefore has six zeros and poles only
at zero or ∞. Since each point of the impulse response alternates signs, it is a
high-pass filter. All of this leads us to pole-zero plot PZ2.

(c) L is IIR, with alternating signs but with zero values in between each alternation.
This indicates a band-pass response, centered at a frequency one-half of the max-
imum frequency (i.e. π

2 ). This leads us to pole-zero plot PZ6. However, I believe
that the correct pole-zero plot would not have a zero at z = 1. Using the PeZ
tool in matlab, if you try plotting the impulse response of a pole-zero pattern
corresponding to PZ6, you’ll get something different, but if you remove the zero
at z = 1, you obtain impulse response L.
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(d) M is IIR and clearly has a complicated frequency response. From the alternation
of signs in the impulse response, we can see that it has both high-pass and band-
pass characteristics. Therefore, the corresponding pole-zero plot is PZ3.

(e) N is FIR (N = 6) and is an averaging (low-pass) filter, and thus corresponds to
PZ1.

Problem 4: DSP First Lab 10

Items to be turned in:

(a) Answers to questions from C.10.4.
(b) Answers to questions from C.10.5.
(c) Plots and answers to questions from C.10.6.

SOLUTION :

(a) Moving the pole from z = 0.5 to the origin changes the impulse response to be just
an impulse, creating an all-pass filter (flat magnitude response) that essentially does
nothing (like multiplying by 1). Moving the pole closer to the unit circle creates a
very sharp low-pass filter and slows the rate of decay of the impulse response. Putting
the pole on the unit circle gives us an impulse response of u[n], which is unstable,
but gives a very sharp (impulse-like) low-pass filter. Moving the pole outside the unit
circle results in an unstable impulse response h[n].

(b) If the determinant (a2
1−4a2: the factor under the square root in the quadratic formula)

is less than zero, the roots of the polynomial will be a complex conjugate pair.

H(z) =
B(z)
A(z)

= G
(1− 0z−1)(1− 0z−1)

(1− 0.75ejπ/4z−1)(1− 0.75e−jπ/4z−1)

=
G

(1− 0.75ejπ/4z−1)(1− 0.75e−jπ/4z−1)

Placing the poles at z = 0.75e±jπ/4 results in a band-pass filter, with the pass-band
centered at ±π/4. Changing the angle of the pole correspondingly changes the location
of the pass-band. The variation in the impulse response also increases with increasing
pole angle. Increasing the magnitude of the pole makes the pass-band sharper (nar-
rower and taller), and decreases the rate of decay of the impulse response, h[n]. Going
outside the unit circle, of course, results in an unstable filter.
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(c) A pole at the origin results in an impulse response of a delayed impulse, a flat mag-
nitude response, and a linear phase response. Adding poles at the origin increases the
delay in the impulse response (still a delayed impulse), leaves the magnitude response
flat, and increases the slope of the phase response.

Zeros at z = −1,±j result in a 4-pt. averaging (low-pass) filter. The phase response
is −3ω

2 .

To get the the desired FIR response, the zeros should be at z = ±j. To get the desired
IIR response, the poles should be at z = ±0.9j. The cascaded system has the following
magnitude response:

−π −π/2 0 π/2 π
0

0.5

1

1.5
Magnitude response of cascaded system

−π −π/2 0 π/2 π
−1.5

−1

−0.5

0

0.5

1

1.5
Phase response of cascaded system

Radian frequency

Figure 7: Response of a notch filter

The notches result from the zeros dominating over the poles the closer we get to
ω̂ = ±π

2 . The gain is the same at ω̂ = 0 and ω̂ = π since those points are equidistant
from the zeros and poles.
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