MAS 160/510 Recitation 2

Friday February 17, 2012

1. Sinusoids and periodicity: Just because it looks like a sine doesn't make it periodic!
(a) $x(t)=\sin \left(t^{2}\right)$
(b) $x[n]=\cos (7.7 \pi n)$
(c) $x[n]=\sin (5 n)$

2. Integration!

We have represented a period function with period $T_{0}=1 / f_{0}$:

$$
\begin{equation*}
x(t)=X_{0}+\Re e\left\{\sum_{k=1}^{\infty} X_{k} e^{j 2 \pi k f_{0} t}\right\} \tag{1}
\end{equation*}
$$

We know that the coefficients can be found using the following equations:

$$
\begin{gather*}
X_{0}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) d t \tag{2}\\
X_{k}=\frac{2}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j 2 \pi k t / T_{0}} d t \quad \text { for } k \neq 0 \tag{3}
\end{gather*}
$$

We will attempt to show why these analysis equations work!

Evaluate the following integral in each of two cases:

$$
\int_{0}^{T_{0}} e^{j 2 \pi n f_{0} t} e^{-j 2 \pi m f_{0} t} d t
$$

(a) For $n=m$:
(b) For $n \neq m$:
3. More integration??!
(a) $\int|x| d x$
(b) $\int t e^{j 2 \pi f t} d t$

