## MAS 160/510 Recitation 2

Friday February 17, 2012

1. Sinusoids and periodicity: Just because it looks like a sine doesn't make it periodic!
(a) $x(t)=\sin \left(t^{2}\right)$

Not periodic!
(b) $x[n]=\cos (7.7 \pi n)=\cos (6 \pi n+1.7 \pi n)=\cos (1.7 \pi n)$
$\Rightarrow \frac{17 \pi}{10} T=2 n \pi \Rightarrow T=20$
(c) $x[n]=\sin (5 n)$

Also not periodic!

## 2. Integration!

We have represented a period function with period $T_{0}=1 / f_{0}$ :

$$
\begin{equation*}
x(t)=X_{0}+\Re e\left\{\sum_{k=1}^{\infty} X_{k} e^{j 2 \pi k f_{0} t}\right\} \tag{1}
\end{equation*}
$$

We know that the coefficients can be found using the following equations:

$$
\begin{gather*}
X_{0}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) d t  \tag{2}\\
X_{k}=\frac{2}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j 2 \pi k t / T_{0}} d t \quad \text { for } k \neq 0 \tag{3}
\end{gather*}
$$

We will attempt to show why these analysis equations work!
Evaluate the following integral in each of the two cases:

$$
\int_{0}^{T_{0}} e^{j 2 \pi n f_{0} t} e^{-j 2 \pi m f_{0} t} d t \quad \text { for } m \neq 0
$$

(a) For $n=m$ :

$$
\int_{0}^{T_{0}} e^{j 2 \pi n f_{0} t} e^{-j 2 \pi m f_{0} t} d t=\int_{0}^{T_{0}} 1 d t=T_{0}
$$

(b) For $n \neq m$ :

$$
\int_{0}^{T_{0}} e^{j 2 \pi n f_{0} t} e^{-j 2 \pi m f_{0} t} d t=\int_{0}^{T_{0}} e^{j 2 \pi(n-m) f_{0} t} d t=\left.\frac{1}{j 2 \pi(n-m) f_{0} t} e^{j 2 \pi(n-m) f_{0} t}\right|_{t=0} ^{T_{0}}=0
$$

3. More integration??!
(a) $\int|x| d x= \begin{cases}\int-x d x & \text { for } x<0 \\ \int x d x & \text { for } x \geq 0\end{cases}$ $= \begin{cases}-x^{2} / 2+C & \text { for } x<0 \\ x^{2} / 2+C & \text { for } x \geq 0\end{cases}$
(b) $\int t e^{j 2 \pi f t} d t=\frac{1}{j 2 \pi f} t e^{j 2 \pi f t}-\frac{1}{(j 2 \pi f)^{2}} e^{j 2 \pi f t}$
