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1943: Warren McCulloch and Walter Pitts
1949: Donald Hebb

1954: Farley and Wesley Clark

1958: Frank Rosenblatt (perceptron)
1969: Marvin Minsky and Seymour Papert

1975: Paul Werbos (backpropagation)

Geoff Hinton

1980s — 2006: yann LeCun  Jirgen Schmidhuber
Yoshua Bengio



Reducing the Dimensionality of
Data with Neural Networks

G. E. Hinton* and R. R. Salakhutdinov

High-dimensional data can be converted to low-dimensional codes by training a multilayer neural
network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent
can be used for fine-tuning the weights in such “autoencoder” networks,

that allows deep autoencoder networks to learn low-dimensional codes that work much
better than principal components analysis as a tool to reduce the dimensionality of data.
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COMPUTER SCIENCE

N ew Life fo r N eura I N etwo rks with many dimensions can be analyzed to find

Garrison W. Cottrell

s many researchers have found, the
Adata they have to deal with are often

high-dimensional—that is, expressed
by many variables—but may contain a great
deal of latent structure. Discovering that struc-
ture, however, is nontrivial. To illustrate the
point, consider a case in the relatively low
dimension of three. Suppose you are handed a
large number of three-dimensional points in
random order (where each point is denoted
by its coordinates along the x, y, and z axes):
{(-7.4000, -0.8987, 0.4385), (3.6000, -0.4425,
-0.8968), (-5.0000, 0.9589, 0.2837), ...}. Is
there a more compact, lower dimensional

description of these data? In this case, the

Searching for structure. (Left) Three-dimensional data that are inherently one-dimensional. (Middle) A
simp

With the help of neural networks, data sets

lower dimensional structures within them.

le “autoencoder” network that is designed to compress three dimensions to one, through the narrow

Recent advances in machine learning have caused some to

N ) _ )
e consider neural networks obsolete, even dead. This work
suggests that such announcements are premature.
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CLASSIFICATION ERROR

ImageNet

Classification of 1000 Image Categories
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€he New Nork Bimes

SCIENCE

SCIENCE

Researchers Announce Advance in Image-Recognition Software
' |

Computer Eyesight Gets a Lot More Accurate

SCIENCE

New Approach Trains Robots to Match Human Dexterity and Speed
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2011: Andrew Ng - Google Brain
Mar 2013: Geoff Hinton - Google

Dec 2013: Zuckerberg at NIPS
Dec 2013: Yann LeCun - Facebook

D Jan 2014: DeepMind - Google
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Hal Daumé lll @haldaumes - Sep 23

@ogrisel right we keep coming back to lamppost :) but this is basically saying DL
= DNN which is a bandwagon | can't get on

Kyle Kastner @kastnerkyle - Sep 23

@haldaume3 @ogrisel @yoavgo for me DL is close to probabilistic graphical
models but trained by backprop vs. Message passing or w/e

Kyle Kastner @kastnerkyle - Sep 23
@haldaume3 @ogrisel @yoavgo this leads to focus on jointly trained systems,
weird conditional architectures, differentiability




Supervised Learning

i=1,.. N {x;,v:}
x1: (02180, 1 bedroom, 1930) y1:S500K
X1: .- y1: “apple”

x1: Washington D.C. is the capitol of the US.
y1: Paris est la capitale de la France.



Supervised Learning

{x;,v:} f:basis set
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Deep Learning as Adaptive Basis Regression

i=1,.. N {x;,v:} f:basis set

K
~ %k
Vi = Ewkxik
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Deep Learning as Adaptive Basis Regression

i=1,.. N {x;,v:} f:basis set

Representation Breaks
Learning Convexity

y; =w*, f(x;)) ® ¥ learned

n v
w* = argminZII(W,f(Xi)> — y;ll
Y=



Deep Learning as Adaptive Basis Regression

i=1,.. N {x;,v:} f:basis set
Feature Selection

y; =w*, f(x;)) ® ¥ learned

“

wh = argminzll(W,f(Xi» —yill + reg(w)
Vo=



Deep Learning as a Choice of Hypothesis Space

i=1,..,N X0, Vi) F:hypothesis space

F =194®9bl9a: 9p € G}
f"(x;)) =y; G:atomic funcs Q:operator

f* = argmin ) If(x;) =yl
1=1

fEF
Linear Regression Kernel Methods Deep Learning
4 X o

9a(x;) + gp(x;) 9a(x;) gp(x;) Ib(ga(xi))



Deep Learning in Practice

g1(x) = (w, x) basically a rotation

gni(x) = tanh(x) basically a threshold




Deep Learning in Practice

g1(x) = (w, x) basically a rotation

gni(x) = tanh(x) basically a threshold

g1(x)



Deep Learning in Practice

g1(x) = (w, x) basically a rotation

gni(x) = tanh(x) basically a threshold

gln(gl(x))



Deep Learning in Practice

g1(x) = (w, x) basically a rotation

gni(x) = tanh(x) basically a threshold

gi (gm(gl(x)))



Deep Learning in Practice

g1(x) = (w, x) basically a rotation

gni(x) = tanh(x) basically a threshold

Ini (gl (gln(gl(x))))



Deep Learning in Practice

g1(x) = (w, x) basically a rotation

gni(x) = tanh(x) basically a threshold

91 (gnl (gz (gm(gz(x)))))



Deep Learning in Practice

g1(x) = (w, x) basically a rotation

gni(x) = tanh(x) basically a threshold

Inl (gz (gnl (gz (gm(gz(x))))))
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Standard Neural Architectures: Feedforward

tanh({w, x))




Standard Neural Architectures: Feedforward
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Standard Neural Architectures: Feedforward
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Standard Neural Architectures: Feedforward
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Standard Neural Architectures: Feedforward
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Standard Neural Architectures: Feedforward
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Standard Neural Architectures: Feedforward
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Standard Neural Architectures: Feedforward
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Standard Neural Architectures: Feedforward
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Standard Neural Architectures: Feedforward
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Standard Neural Architectures: Feedforward
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Standard Neural Architectures: Feedforward

D © 0. 9.
g g %1

OSSN aves aupts

o oo

Learning (a_y)

ow




Standard Neural Architectures: Convolutional
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Convolutional

Standard Neural Architectures
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Standard Neural Architectures: Convolutional
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Standard Neural Architectures: Convolutional
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Convolutional

Standard Neural Architectures
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Application: Image Recognition

ram heptathlon ultimate (sport)
track cycling half marathon decathlon aggressive inline skating hurling
road bicycle racing munning hurdles . frecstyle scootering flag football
marathon marathon pentathlon skijoring frecboard (skateboard) association football
ultramarathon inlinc speed skating sprint (running) carting sandboarding mugby scvens

SRR football

telemark skiing arena football rodeo blackball (pool)
nordic skiing canadian football reining trick shot
motocross ﬂ touring canocing amcrican football cowboy action shooting cight-ball

ing

grand prix motorcycle racing skijoring adventure racing women's lacrosse bull riding straight pool



Application: Deep Dream




Deep Dream

Jolg

Applicat




Application: Deep Dream
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Application: Deep Dream
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Standard Neural Architectures: Recurrent
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Standard Neural Architectures: Recurrent
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Standard Neural Architectures: Recurrent
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Application: Machine Translation

Decoder
(Recurrent)

Encoder
(Recurrent)

Final Hidden State
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Paris is the capital of France. Paris est la capitale de |la France.
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Application: Machine Translation
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Application: Machine Translation
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Application: Machine Translation
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Encoder
(Recurrent)

Final Hidden State

Q
9
c
Q
)
c
()]
(Vs
Q
O
P
-
@)
(Vg

Paris is the capital of France.

Target Sentence

H

Paris est |la capitale de la France.



Application: Machine Translation

Decoder
(Recurrent)

Encoder
(Recurrent)

Q
J
c
Q
)
c
()]
(Vg
Q
O
p -
-
@
(Vg

Final Hidden State

Paris is the capital of France. Paris la capitale de la France.



Application: Machine Translation

Encoder
(Recurrent)

Final Hidden State

Q
9
c
Q
)
c
()]
(Vs
Q
O
P
-
@)
(Vg

Paris is the capital of France.

Target Sentence

H

Paris est |la capitale de la France.



Application: Machine Translation

Decoder
(Recurrent)

Encoder
(Recurrent)

Final Hidden State

Q
J
c
Q
)
c
()]
(Vg
Q
O
p -
-
@
(Vg

Paris is the capital of France. Paris est |a capitale de la France.



Application: Machine Translation

Encoder
(Recurrent)

Final Hidden State

Q
9
c
Q
)
c
()]
(Vs
Q
O
P
-
@)
(Vg

Paris is the capital of France.

Target Sentence

H

Paris est |la capitale de la France.



Application: Machine Translation

Decoder
(Recurrent)

Encoder
(Recurrent)

Final Hidden State

Q
J
c
Q
)
c
()]
(Vg
Q
O
p -
-
@
(Vg

Paris is the capital of France. Paris est Ia de la France.



Application: Machine Translation
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Application: Machine Translation
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Application: Machine Translation

X Mary admires John

X Mary is in love with John

X Mary respects John
X John admires Mary

X John is in love with Mary

X John respects Mary




Application: Machine Translation

X | was given a card by her in the garden

X In the garden, she gave me a card
X She gave me a card in the garden

X She was given a card by me in the garden
X In the garden, | gave her a card

X | gave her a card in the garden




Application: Word Embeddings

King — Man + Woman = Queen

Paris — France + England = London



Application: Word Embeddings

Woman

/

Man
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/

Uncle
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/

King



Application: Caption Generation

Source Image Convolutional Target Sentence ]




Application: Caption Generation

A group of young people playing a game of Frisbee.



Application: Caption Generation

Two hockey players are fighting over the puck.



Application: Caption Generation
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A herd of elephants walking across a dry grass field.



Application: Caption Generation

A man flying through the air while riding a snowboard.



Application: Caption Generation

Deep Visual-Semantic Alignments for Generating Image Descriptions (Stanford)
Show and Tell: A Neural Image Caption Generator (Google)

From Captions to Visual Concepts and Back (MSR)

Deep Captioning with Multimodal Recurrent Neural Networks (UCLA)

Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation (MSR)

Che New Hork Times

SCIENCE

Researchers Announce Advance in Image-Recognition Software
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Frontiers of Neural Architectures: Memory

Neural Turing Machines

Alex Graves, Greg Wayne, Ivo Danihelka

(Submitted on 20 Oct 2014 (v1), last revised 10 Dec 2014 (this version, v2))

We extend the capabilities of neural networks by coupling them to [external’ memory reésources, which
they can interact with by attentional processes. The combined system is analogous to a Turing

Machine or Von Neumann architecture but is|differentiable’énd=to=end, allowing it to be efficiently
trained with gradient descent. Preliminary results demonstrate that Neural Turing Machines can infer

simple algorithms such as copying, sorting, and associative recall from input and output examples.




Frontiers of Neural Architectures: Memory
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Frontiers of Neural Architectures: Memory

L mput ([ output )

Controller (Recurrent)
oy

Read Head

[ Write Head ]4—




Frontiers of Neural Architectures: Memory
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Application: Algorithms

Tasks:
Copy
Repeat Copy
Associative Recall
Dynamic N-Grams
Priority Sort
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Application: Algorithms

Inputs Outputs

speay

Location ——»

Time ——» Time ——»

Write Weightings Read Weightings



Application: Algorithms

initialise: move head to start location

while input delimiter not seen do
receive input vector
write 1nput to head location
increment head location by 1

end while

return head to start location

while true do
read output vector from head location
emit output
increment head location by 1

end while



Frontiers of Neural Architectures: Memory

Memory Networks.
Jason Weston, Sumit Chopra, Antoine Bordes.

Teaching Machines to Read and Comprehend.
Karl Moritz Hermann et. al.

Large-scale Simple Question Answering with
Memory Networks.
Antoine Bordes et. al.

Learning CFGs: Capabilities and limitations of a
recurrent neural network with an external stack
memory.

S. Das, C. L. Giles, and G. Z. Sun.

Inferring Algorithmic Patterns with Stack
Augmented Recurrent Nets.
Armand Joulin and Tomas Mikolov.

Reinforcement Learning Turing Machine.
Wojciech Zaremba and llya Sutskever.

End-To-End Memory Networks.
S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus.

Learning to Transduce with Unbounded Memory.
E. Grefenstette et. al.

Transition-based dependency parsing with stack
long short-term memory.
C Dyer et. al.

Ask Me Anything: Dynamic Memory Networks for
Natural Language Processing.
A Kumar et. al.

Recurrent Neural Networks with External
Memory for Spoken Language Understanding.
B Peng et. al.
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Application: Question and Answer

Joe went to the garden then Fred picked up the milk; Joe moved to the bathroom and Fred dropped the
milk, and then Dan moved to the living_room.

Where is Dan? A: living room I believe

Where 1s Joe? A: the bathroom

Fred moved to the bedroom and Joe went to the kitchen then Joe took the milk there and Dan journeyed
to the bedroom; Joe discarded the milk.

Where 1s the milk now ? A: the milk 1s in the kitchen

Where is Dan now? A: I think he is in the bedroom

Joe took the milk there, after that Mike travelled to the office, then Joe went to the living_room, next Dan
went back to the kitchen and Joe travelled to the office.

Where is Joe now? A: I think Joe is in the office
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DRAW: A Recurrent Neural Network For Image Generation

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, Daan Wierstra
(Submitted on 16 Feb 2015 (v1), last revised 20 May 2015 (this version, v2))

This paper introduces the Deep Recurrent Attentive Writer (DRAW) neural network architecture for image
generation. DRAW networks combine a fioveliSpatialattention mechanism thatimimicsthe foveation of]
the human eye, with a sequential variational auto-encoding framework that allows for the iterative
construction of complex images. The system substantially improves on the state of the art for generative
models on MNIST, and, when trained on the Street View House Numbers dataset, it generates images that
cannot be distinguished from real data with the naked eye.
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Reading MNIST
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LETTER

Human-level control through deep reinforcement
learning

Volodymyr Mnih'*, Koray Kavukcuoglul*, David Silver'*, Andrei A. Rusu', Joel Veness', Marc G. Bellemare', Alex Graves',
Martin Riedmiller', Andreas K. Fidjelandl, Georg Ostrovski', Stig Petersen', Charles Beattie', Amir Sadik’, loannis Antonogloul,

Helen Kingl, Dharshan Kumaran', Daan Wierstra!, Shane Legg1 & Demis Hassabis'

doi:10.1038/nature14236
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Reinforcement
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Application: Robotics






What is deep learning? Take Il

deep learning = non-convex differentiable optimization

deep reinforcement learning = non-convex non-differentiable optimization

deep learning = design of differentiable (and thus trainable) computers



Review

Classes

Book

Code

Deep Learning

Introductory Deep Learning
Convolutional Nets (CS231n)
Recurrent Nets (CS224d)

Deep Reinforcement
Learning (CS294)

Deep Learning

Keras, Lasagne, Blocks
Torch, Theano, Caffe, CGT
Autograd

Resources

Yann LeCun, Yoshua Bengio, Geoff Hinton, Nature 521, 436-444

Hugo Larochelle, Université de Sherbrooke http://bit.ly/1NhkCf2
Andrej Karpathy, Stanford University http://cs231n.stanford.edu
Richard Socher, Stanford University http://cs224d.stanford.edu
John Schulman, UC Berkeley http://rll.berkeley.edu/deepricourse/

Yoshua Bengio, lan J. Goodfellow, http://goodfeli.github.io/dlbook/
and Aaron Courville

Basic / off-the-shelf
Heavy duty
Prototyping



