

MAS S66 New Destinations in Artificial Intelligence Goals and Directions for Future Research

joscha@mit.edu

Components for Cognitive Al

Layers of Cognition

Reflective Deliberative Reactive

Columns of Cognition

Cognitive Grid

Reflexive	Meta-	Management
Perception	Management	Action
Deliberative	Planning,	Deliberative
Perception	Reasoning	Action
Reactive Perception	Reflexes	Reflexive Action

Conceptual Analysis: HCogAff (Sloman 2001)

FutureAl

Environment

Cognitive Artificial Intelligence

Methods should focus on components and performances necessary for intelligence:

Universal Representations:

Grounded neuro-symbolic representations (integrate both symbolic and distributed aspects)

• (Semi-) Universal Problem Solving:

Learning, Planning, Reasoning, Analogies, Action Control, Reflection ...

Universal Motivation:

Polythematic, adaptive goal identification

- Emotion and affect
- Whole, testable architectures

Modeling Motivation in a Cognitive Architecture

- General intelligence needs General Motivation
- Motivational system structures cognition
- Motivational dynamics: physiological, social and cognitive drives
- Intention selection and action control
- Motivation vs. affect

MicroPsi architecture

PSI theory Principles of Synthetic Intelligence (Dörner 1999; Bach 2003, 2009)

Acknowledgements

Work on MicroPsi2 is collaborative effort:

- Ronnie Vuine, Dominik Welland, Priska Herger, Jonas
 Kemper are contributors to the current version
- Architecture/concepts have been inspired by Dietrich Dörner, Aaron Sloman, Marvin Minsky, Stan Franklin and many others
- Support from Humboldt University of Berlin, University of Osnabrück (Institute for Cognitive Science), Berlin School of Mind and Brain, Harvard Program of Evolutionary Dynamics, MIT Media Lab

MicroPsi Principles

- Neuro-Symbolic architecture
- Agents implemented as spreading activation networks
- Unified representations, different sets of operations
- All representations are grounded
- Meaning is attached to representations by motivation

Implementation: MicroPsi 2 (Bach, Welland, Vuine, Herger 12, 14)

Goals in MicroPsi

- Goal: situation or action that afforts to satisfy a need
- Aversive goal: situation or action that frustrate a need
- All behavior is directed on satisfying an appetitive goal or avoiding an aversive goal
- Needs are predefined, goals are learned

From Needs to Behavior

Motivation in MicroPsi

Pleasure and distress:

- Change of a demand is reflected in pleasure or distress signal
- Strength is proportional to amount of change
- Pleasure and distress signals deliver *reinforcement* values for behavioral procedures and episodic
 sequences and define *appetitive* and *aversive* goals.

Motivational System

drive = demand + urge indicator

motive = urge + goal situation

motive = urge + goal situation

Physiological needs

- Thirst
- Hunger
- Rest
- Warmth
- Libido
- ...

→ Survival as emergent property

Social needs

- Affiliation (Attention from others, external legitimacy)
- Internal legitimacy
- Nurturing (caring for others)
- Affection
- Dominance

Cognitive needs

• Competence:

- Skill acquisition (epistemic competence)
- Coping/control ability (general competence)
- Effect generation
- Uncertainty reduction:
 - Exploration
- Aesthetics:
 - Stimulus oriented
 - Structure oriented (abstract aesthetics)

Needs and urges

association by learning:

retrogradient reinforcement

Motivator:

situations leading up to goal = plan

Intention:

Motive selection

Need becomes active

No autonomous regulation possible: Trigger *Urge Signal*

Try to satisfy urge opportunistically

No opportunistic satisfaction possible: Urge Strength – Suppression > Strength of *Leading Motive*: Try to recall strategy to satisfy urge

If no strategy is found:
Construct a plan to satisfy urge

If no plan is found: Increase need for exploration

Turn strongest motive into leading motive (intention)

Need parameters

- Strength: relative importance
- Decay: rate of replenishment
- Gain: effect of satisfaction
- Loss: effect of frustration

 different configuration of need parameters = different personality traits

Modulation in PSI/MicroPsi

Primary modulators

Arousal unspecific sympathicus syndrome

Valence situation evaluation (good/bad)

Aggression fight or flight

Compare: Affective dimensions (Wundt 1910)

Attentional modulators

Modulator dynamics

Modulator parameters

- Baseline
- Range
- Volatility
- Duration

 Different modulator parameter configurations = different temperaments

Emotions as directed affect + Modulation

Examples:

Fear: anticipation of aversive events (→ neg. valence) + arousal

Anxiety: uncertainty (→ neg. valence) + low competence + arousal, high securing behavior (frequent background checks)

Emotions as directed affect + Modulation

Examples:

Anger: Perceived obstacle (usually agent) manifestly prevented reaching of an active, motivationally relevant goal (→ neg. valence), sanctioning behavior tendency (→ goal relevance is re-directed to sanctioning of obstacle), arousal, low resolution level, high action readyness, high selection threshold

Sadness: Manifest prevention from *all* conceived ways of reaching active, relevant goal, without relevant obstacle (\rightarrow neg. valence), support-seeking behavior (by increased demand for affiliation), low arousal, inhibition of active goal \rightarrow decreased action readyness

Emotions as directed affect + Modulation

Examples:

- Pride: high competence (>> low securing rate), high internal legitimacy, likely coincidence with high external legitimacy
- Joy: high arousal + high perceived reward signal from satisfying a demand
- Bliss: low arousal + high perceived reward signal from satisfying a demand (since physiological demands often involve high arousal, mostly related to cognitive demands, such as aesthetics)

Individual Variations by Parameterizing

Possible grounding of personality properties (FFM):

- Openness: appreciation of art and new ideas, curiousity
- Conscientiousness: rulefollowing vs. chaotic
- Extraversion: tendency to seek stimulation by environment and others
- Agreeableness: tendency for cooperativeness and compassion
- Neuroticism: emotional stability, effect of failure to self-confidence

Needs and Big Five

Player personality types

Richard Bartle (1996): "Hearts, Clubs, Diamonds, Spades: Players Who suit MUDs"

Motivation and personality

Personality properties can be modeled as motivational variability

Affiliation

Competence

Uncertainty reduction

Needs and player types (with S. Tekovsky)

Motivation in MicroPsi

- All actions are directed on goals or avoidance of aversive goals
- All goals are established through learning how to satisfy needs
- All decisions are based on strengths of urges and chances to satisfy corresponding needs
- Personality differences are the result of parametrization of the motivational system

Emotion in MicroPsi

- Affective states are configurations of cognition, by modulators
- Primary modulators: arousal, valence, agression
- Attentional modulators: focus, securing rate, resolution level
- High-level emotions are determined by an affective state that is directed on motivational content