1. Phase and Time shifting. *DSP First* 2.17(a)

2. Switching between frequency-domain and time-domain

 (a) *DSP First* 3.2

 (b) *DSP First* 3.3(a), 3.3(b)

3. Fourier Series

 Determine the Fourier series for the following periodic signals of period T_0:

 (a) $x(t) = |t|, \quad -T_0/2 \leq t < T_0/2$

 (b) $x(t) = \begin{cases} t, & 0 \leq t < T_0/2 \\ t^2, & T_0/2 \leq t < T_0 \end{cases}$

 For the following lab exercises (found in Appendix C of the *DSP First* text), please turn in a hard copy of your functions.

4. *DSP First* Lab 3

 You only need to synthesize one of the 5 musical pieces given (your choice).

 Items to be turned in:

 (a) Your note function.

 (b) Your play_scale function.

 (c) A function that outputs sound for one of the given musical pieces

 (d) [MAS.510] Now that you have listened to your synthesized notes, aren’t the transitions between different notes very choppy and abrupt? Generate a function that outputs the same piece of music you had selected in (c) but with a smoother transition or basically gives the notes a nice fade. *Hint: make a mathematical expression or function that reduces the magnitude of the note against time.*
5. **DSP FIRST Lab 4** You only need to synthesize one of the FM instruments (bell or clarinet). Items to be turned in:

 (a) Your `mychirp` function (This should look familiar!)

 (b) Your `beat` function.

 (c) Plots and answers to questions specified in C.4.3.3.

 (d) Either your `bellenv` and `bell` functions, or your `woodenv` and `clarinet` functions.

6. **Additional problem (for MAS.510)**

 Playing with sounds in your environment

 (a) Record a simple pure tone. Choose any length of time you desire. Plot the sound in time and also using a spectrogram (use the `specgram` function in MATLAB). Try to determine the dominant pitch in the simple tone and justify how it was determined.

 (b) Record your favorite piece of music or any sound for a time duration of 2 secs (in wav format, using `wavread` command in MATLAB). Plot the spectrogram of the sound you just recorded. Suggest a way in which you could determine the pitch from the spectrogram if you didn’t know what it was to begin with.