1. **Sinusoids and periodicity:** Just because it looks like a sine doesn’t make it periodic!

 (a) \(x(t) = \sin(t^2) \)

 (b) \(x[n] = \cos(7.7\pi n) \)

 (c) \(x[n] = \sin(5n) \)

2. **Integration!**

 We have represented a period function with period \(T_0 = 1/f_0 \):

 \[
 x(t) = X_0 + \Re\{\sum_{k=1}^{\infty} X_k e^{j2\pi kf_0t}\} \tag{1}
 \]

 We know that the coefficients can be found using the following equations:

 \[
 X_0 = \frac{1}{T_0} \int_0^{T_0} x(t)dt \tag{2}
 \]

 \[
 X_k = \frac{2}{T_0} \int_0^{T_0} x(t)e^{-j2\pi kt/T_0}dt \quad \text{for} \ k \neq 0 \tag{3}
 \]

 We will attempt to show why these analysis equations work!

 Evaluate the following integral in each of two cases:

 \[
 \int_0^{T_0} e^{j2\pi nf_0t}e^{-j2\pi mf_0t} dt
 \]

 (a) For \(n = m \):

 (b) For \(n \neq m \):

3. **More integration??!!**

 (a) \(\int |x|dx \)

 (b) \(\int te^{j2\pi ft}dt \)