
C Compiler
Reference Manual

Custom Computer Services Inc.
July 2001

Copyright © 1994, 2001 Custom Computer Services, Inc.
All rights reserved worldwide. No part of this work may be reproduced or copied
in any form or by any means- electronic, graphic, or mechanical, including
photocopying, recording, taping, or information retrieval systems0 without prior
permission

C Compiler Reference Manual
Table of Contents

Table of Contents

OVERVIEW..1

PCB, PCM AND PCH OVERVIEW...1
PCW OVERVIEW..1
TECHNICAL SUPPORT...1
INSTALLATION ..2
INVOKING THE COMMAND LINE COMPILER ...2
MPLAB INTEGRATION ...3
DIRECTORIES ...4
FILE FORMATS ...4
DIRECT DEVICE PROGRAMMING ..4
DEVICE CALIBRATION DATA ...5
UTILITY PROGRAMS..5

PCW IDE..7

FILE MENU...7
PROJECT MENU ...8
EDIT MENU ..9
OPTIONS MENU..9
COMPILE OPTIONS ...11
VIEW MENU..11
TOOLS MENU ...13
HELP MENU ...15
PCW EDITOR KEYS ...16
PROJECT WIZARD ..18

PRE-PROCESSOR..19

PRE-PROCESSOR DIRECTIVES ..20
#ASM ...20
#BIT..23
#BYTE..24
#CASE ...25
_ _ DATE_ _ ..25
#DEFINE ..26
#DEVICE..27
_ _DEVICE_ _..27

i

C Compiler Reference Manual
Table of Contents

#ERROR ..28
#FUSES ...28
#ID..29
#IF EXPR ...30
#IFDEF...31
#INCLUDE ...32
#INLINE..33
#INT_XXXX..33
#INT_DEFAULT...34
#INT_GLOBAL ..35
#LIST..35
#LOCATE...36
#NOLIST ..36
#OPT..37
#ORG ...37
_ _PCB_ _..39
_ _PCM_ _ ...39
_ _ PCH _ _..39
#PRAGMA ...40
#PRIORITY ..40
#RESERVE ..41
#ROM...41
#SEPARATE..42
#TYPE..42
#UNDEF...43
#USE DELAY...43
#USE FAST_IO..44
#USE FIXED_IO ..44
#USE I2C ...45
#USE RS232...46
#USE STANDARD_IO...47
#ZERO_RAM ...48

DATA DEFINITIONS ...49

DATA TYPES ..49

FUNCTION DEFINITION ...52

FUNCTION DEFINITION ..52
REFERENCE PARAMETERS ...53

ii

C Compiler Reference Manual
Table of Contents

C STATEMENTS AND EXPRESSIONS ...54

PROGRAM SYNTAX...54
COMMENT..54
STATEMENTS ...55
EXPRESSIONS ..56
OPERATORS...57
OPERATOR PRECEDENCE ...58

BUILT-IN FUNCTIONS..59

ABS() ..61
ACOS()..61
ASIN() ...61
ATAN() ..61
ATOF..61
ATOI() ...62
ATOL() ..62
ATOI32() ..62
BIT_CLEAR()..63
BIT_SET() ...63
BIT_TEST() ...64
CEIL()..65
COS() ..66
DELAY_CYCLES() ...66
DELAY_MS() ..66
DELAY_US()...67
DISABLE_INTERRUPTS() ...68
ENABLE_INTERRUPTS() ..69
EXP()...69
EXT_INT_EDGE()...70
FLOOR() ...70
GET_TIMERX() ..71
GETC() ...72
GETS() ..73
I2C_POLL()...73
I2C_READ() ...74
I2C_START() ...75
I2C_STOP() ...75
I2C_WRITE()...76
INPUT() ...77
INPUT_X() ..77

iii

C Compiler Reference Manual
Table of Contents

ISAMOUNG() ..78
ISALNUM(CHAR) ..79
KBHIT() ..80
LABS() ..81
LCD_LOAD() ..81
LCD_SYMBOL() ...82
LOG() ..83
LOG10() ..83
MAKE8() ..84
MAKE16() ..85
MAKE32() ..85
MEMCPY() ..86
MEMSET()...87
OUTPUT_BIT() ...87
OUTPUT_FLOAT() ...88
OUTPUT_HIGH() ..89
OUTPUT_LOW()...89
OUTPUT_A() ..90
PORT_B_PULLUPS() ..91
POW() ...91
PRINTF() ...92
PSP_OUTPUT_FULL()..93
PUTC() ..94
PUTS() ..95
READ_ADC()...95
READ_BANK() ...96
READ_CALIBRATION()...97
READ_EEPROM() ..98
READ_PROGRAM_EEPROM () ..98
RESET_CPU() ...99
RESTART_CAUSE() ...99
RESTART_WDT()..100
ROTATE_LEFT() ..101
ROTATE_RIGHT()..102
SET_ADC_CHANNEL() ...102
SET_PWM1_DUTY() ..103
SET_RTCC() ...104
SET_TRIS_A() ..105
SET_UART_SPEED()..106
SETUP_ADC(MODE) ..107
SETUP_ADC_PORTS()..107
SETUP_CCP1() ..108
SETUP_COMPARATOR()..109

iv

C Compiler Reference Manual
Table of Contents

SETUP_COUNTERS()..110
SETUP_LCD() ..111
SETUP_PSP()...112
SETUP_SPI() ..112
SETUP_TIMER_0 ()..113
SETUP_TIMER_1()...114
SETUP_TIMER_2()...115
SETUP_TIMER_3()...116
SETUP_VREF() ..116
SETUP_WDT ()...117
SHIFT_LEFT() ..118
SHIFT_RIGHT() ..119
SIN () ...120
SLEEP() ...120
SPI_DATA_IS_IN() ..121
SPI_READ()...122
SPI_WRITE() ..122
SQRT() ..123
STANDARD STRING FUNCTIONS ..124
STRTOK() ..125
STRCPY() ...126
SWAP() ...127
TAN()...128
TOLOWER() ...128
WRITE_BANK()..128
WRITE_EEPROM()...129
WRITE_PROGRAM_EEPROM ()...130

COMPILER ERROR MESSAGES...131

COMMON QUESTIONS AND ANSWERS..142

HOW DOES ONE MAP A VARIABLE TO AN I/O PORT? ...143
WHY DOES A PROGRAM WORK WITH STANDARD I/O BUT NOT WITH FAST I/O?.........145
WHY DOES THE GENERATED CODE THAT USES BIT VARIABLES LOOK SO UGLY?146
WHY IS THE RS-232 NOT WORKING RIGHT? ..147
HOW CAN I USE TWO OR MORE RS-232 PORTS ON ONE PIC?149
HOW DOES THE PIC CONNECT TO A PC? ..150
WHY DO I GET AN OUT OF ROM ERROR WHEN THERE SEEMS TO BE ROM LEFT? .151
WHAT CAN BE DONE ABOUT AN OUT OF RAM ERROR?152

v

C Compiler Reference Manual
Table of Contents

WHY DOES THE .LST FILE LOOK OUT OF ORDER? ..153
HOW IS THE TIMER0 INTERRUPT USED TO PERFORM AN EVENT AT SOME RATE?.....154
HOW DOES THE COMPILER HANDLE CONVERTING BETWEEN BYTES AND WORDS?155
HOW DOES THE COMPILER DETERMINE TRUE AND FALSE ON EXPRESSIONS?156
WHAT ARE THE RESTRICTIONS ON FUNCTION CALLS FROM AN INTERRUPT FUNCTION?
...157
WHY DOES THE COMPILER USE THE OBSOLETE TRIS?...158
HOW DOES THE PIC CONNECT TO AN I2C DEVICE?..158
INSTEAD OF 800, THE COMPILER CALLS 0. WHY?...159
INSTEAD OF A0, THE COMPILER IS USING REGISTER 20. WHY?..............................159
HOW DO I DIRECTLY READ/WRITE TO INTERNAL REGISTERS?..................................160
HOW CAN A CONSTANT DATA TABLE BE PLACED IN ROM?.....................................161
HOW CAN THE RB INTERRUPT BE USED TO DETECT A BUTTON PRESS?...................162
WHAT IS THE FORMAT OF FLOATING POINT NUMBERS?...163
WHY DOES THE COMPILER SHOW LESS RAM THAN THERE REALLY IS?164
WHAT IS AN EASY WAY FOR TWO OR MORE PICS TO COMMUNICATE?165
HOW DO I WRITE VARIABLES TO EEPROM THAT ARE NOT A BYTE?166
HOW DO I GET GETC() TO TIMEOUT AFTER A SPECIFIED TIME?167
HOW CAN I PASS A VARIABLE TO FUNCTIONS LIKE OUTPUT_HIGH()?168
HOW DO I PUT A NOP AT LOCATION 0 FOR THE ICD?..169
HOW DO I DO A PRINTF TO A STRING?..169
HOW DO I MAKE A POINTER TO A FUNCTION? ...170
HOW MUCH TIME DOES MATH OPERATIONS TAKE?..171
HOW ARE TYPE CONVERSIONS HANDLED? ...172

EXAMPLE PROGRAMS..174

SOFTWARE LICENSE AGREEMENT..187

vi

C Compiler Reference Manual
Overview

OVERVIEW
PCB, PCM and PCH Overview

The PCB, PCM and PCH are separate compilers. PCB is for 12 bit opcodes,
PCM is for 14 bit opcodes and PCH is for the 16 bit PIC 18. Since much is in
common between the compilers both are covered in this reference manual.
Features and limitations that apply to only specific controllers are indicated
within. These compilers are specially designed to meet the special needs of the
PIC controllers. These tools allow developers to quickly design application
software for these controllers in a highly readable high-level language.

The compilers have some limitations when compared to a more traditional C
compiler. The hardware limitations make many traditional C compilers
ineffective. As an example of the limitations, the compilers will not permit
pointers to constant arrays. This is due to the separate code/data segments in
the PIC hardware and the inability to treat ROM areas as data. On the other
hand, the compilers have knowledge about the hardware limitations and does the
work of deciding how to best implement your algorithms. The compilers can
implement very efficiently normal C constructs, as well as input/output operations
and bit twiddling operations.

PCW Overview

PCW is the professional package that includes both the PCM and PCB
compilers. PCW has a Windows IDE. PCW has the same syntax as the
command line compilers. The PCH compiler is available for PCW as an optional
add-on.

Technical Support

The latest software can be downloaded via the Internet at:

http://www.ccsinfo.com/download.html

for 30 days after the initial purchase. For one year’s worth of updates, you can
purchase a Maintenance Plan directly from CCS. Also found on our web page
are known bugs, the latest version of the software, and other news about the
compiler.

We strive to ensure that each upgrade provides greater ease of use along with
minimal, if any, problems. However, this is not always possible. To ensure that

1

C Compiler Reference Manual
Overview

all problems that you encounter are corrected in a diligent manner, we suggest
that you email us at support@ccsinfo.com outlining your specific problem along
with an attachment of your file. This will ensure that solutions can be suggested
to correct any problem(s) that may arise. We try to respond in a timely manner
and take pride in our technical support.

Secondly, if we are unable to solve your problem by email, feel free to telephone
us at (262) 797-0455 x 32. Please have all your supporting documentation on-
hand so that your questions can be answered in an efficient manner. Again, we
will make every attempt to solve any problem(s) that you may have. Suggestions
for improving our software are always welcome and appreciated.

Installation

PCB, PCM, and PCH Installation:
Insert the disk in drive A and from Windows Start|Run type:
 A:SETUP

PCW Installation:
Insert CD ROM, select each of the programs you wish to install and follow the
on-screen instructions.

Invoking the Command Line Compiler

The command line compiler is invoked with the following command:

 CCSC options cfilename

Valid options:
+FB Select PCB (12 bit) -D Do not create debug file
+FM Select PCM (14 bit) +DS Standard .COD format debug file
+FH Select PCH (PIC18) +DM .MAP format debug file
+F7 Select PC7 (PIC17) +DC Expanded .COD format debug file
+FS Select PCS (SX) +Yx Optimization level x (0-9)
+ES Standard error file +T Create call tree (.TRE)
+EO Old error file format +A Create stats file (.STA)
-J Do not create PJT file -M Do not create symbol file

The xxx in the following are optional. If included it sets the file extension:

+LNxxx Normal list file +O8xxx 8 bit Intel HEX output file
+LSxxx MPASM format list file +OWxxx 16 bit Intel HEX output file
+LOxxx Old MPASM list file +OBxxx Binary output file

2

C Compiler Reference Manual
Overview

-L Do not create list file -O Do not create object file

+P Keep compile status window up after compile
+Pxx Keep status window up for xx seconds after compile
+PN Keep status window up only if there are no errors
+PE Keep status window up only if there are errors

+Z Keep scratch and debug files on disk after compile
I="..." Set include directory search path, for example:

 I="c:\picc\examples;c:\picc\myincludes"
If no I= appears on the command line the .PJT file will be used
to supply the include file paths.

#xxx="yyy" Set a global #define for id xxx with a value of yyy, example:

 #debug="true"

+STDOUT Outputs errors to STDOUT (for use with third party editors)
+SETUP Install CCSC into MPLAB (no compile is done)
+V Show compiler version (no compile is done)
+Q Show all valid devices in database (no compile is done)

If @filename appears on the CCSC command line command line options will be
read from the specified file. Parameters may appear on multiple lines in the file.

If the file CCSC.INI exists in the same directory as CCSC.EXE then command
line parameters are read from that file before they are processed on the
command line.

Examples:

 CCSC +FM C:\PICSTUFF\TEST.C
 CCSC +FM +P +T TEST.C

MPLAB Integration

The CCSC.EXE Windows program will work as a bridge from MPLAB to the C
compiler. Simply enter the following from Start|Run type:

CCSC +SETUP

This will configure MPLAB. When creating a new project select CCS as the
LANGUAGE TOOL SUITE. Then select the .HEX file and click on NODE
PROPERTIES. Here you need to select the compiler you want to use (PCB,
PCM, and PCH).

3

C Compiler Reference Manual
Overview

If your first compile is done from the CCS IDE then it will create a MPLAB project
file eliminating the need to create a new project and edit the nodes as described
above.

If your MPLAB version is older than 3.40, you will need to download the latest
version from Microchip's web page at: http://www.Microchip.com

Directories

The compiler will search the following directories for Include files.

• Directories listed on the command line
• Directories specified in the .PJT file
• The same directory as the source file

By default, the compiler files are put in C:\Program Files\PICC and the example
programs and all Include files are in C:\Program Files\PICC\EXAMPLES.

The compiler itself is a DLL file. The DLL files are in a DLL directory by default in
C:\Program Files\PICC\DLL. Old compiler versions may be kept by renaming
this directory.

File Formats

The compiler can output 8 bit hex, 16 bit hex, and binary files. Two listing formats
are available. Standard format resembles the Microchip tools and may be
required by some third-party tools. The simple format is easier to read. The
debug file may either be a Microchip .COD file or Advanced Transdata .MAP file.
All file formats and extensions are selected via the options|file formats window
on the DOS IDE and the compiler|options in the Windows IDE.

Direct Device Programming

The IDE has a program option in the main menu bar. When invoked, the IDE will
issue a command to start the user's device programmer. The commands are
specified in the Options|Programer Options window. The %H is replaced with
the HEX filename and %D is replaced with the device number. Put a ! at the end
if the command line if you would like a pause before returning to IDE. Only
programs that can be invoked by a command will work with this option.

4

C Compiler Reference Manual
Overview

Device Calibration Data

Some devices from Microchip have calibration data programmed into the
program area when shipped from the factory. Each part has its own unique data.
This poses some special problems during development. When an UV erasable
(windowed) part is erased, the calibration data is erased as well. Calibration data
can be forced into the chip during programming by using a #ROM directive with
the appropriate data.

The PCW package includes a utility program to help streamline this process.
When a new chip is purchased, the chip should be read into a hex file. Execute
the File|Read calibration data utility and select a name (.C) for this part. The
utility will create an Include File with specified name that will have the correct
#ROM directives for the part. During prototype development add a #Include
directive and change the name before each build to the part # that is about to be
programmed. For production (OTP parts) simply comment out the #Include.

Utility Programs

SIOW
SIOW is a simple "dumb terminal" program that may be run on a PC to perform
input and output over a serial port. SIO is handy since it will show all incoming
characters. If the character is not a normally displayable character, it will show
the hex code.

DEVEDIT
DEVEDIT is a Windows utility (PCW only) that will edit the device database.
The compiler uses the device database to determine specific device
characteristics at compile time. This utility will allow devices to be added,
modified or removed. To add a device, highlight the closest equivalent chip and
click on ADD. To edit or delete, highlight the device and click on the appropriate
button.

PCONVERT
PCONVERT is a Windows utility (PCW only) that will perform conversions from
various data types to other types. For example, Floating Point decimal to 4
BYTE Hex. The utility opens a small window to perform the conversions. This
window can remain active during a PCW or MPLAB session. This can be useful
during debugging.

CCSC +Q
This will list all devices in the compiler database.

5

C Compiler Reference Manual
Overview

CCSC +FM +V
This will show the current compiler version. Replace +FM with +FB or +FH for
the other compilers.

6

C Compiler Reference Manual
PCW IDE

PCW IDE
File Menu

PCW
F P E O C V T Hile roject dit ptions ompile iew ools elp

N
O
S

A
v

C
l

P
r
X

ew
pen

ave
Save s
Sa e All

lose
C ose All
rint

P inter Setup
e it

N
O

p
r

F
I
C

ew
pen

O en All files
P int All files
ind text in project
nclude Dirs...
lose Project

P

M

IC Wizard

anual

U
t

C
P

o
a

F
R
N
i

B
G

e
v

ndo Ctrl+Z
Cu Shift+Del

opy Ctrl+C
aste Shift+Ins

C py from file
P ste to file
ind Ctrl+F
eplace Ctrl+R
ext F3

F nd Matching } or) F4
Toggle ookmark

oto Bookmark
N xt Window Ctrl+N
Pre ious Window Ctrl+P

0
1

 Shift+Ctrl+0
 Shift+Ctrl+1
 Shift+Ctrl+2
 Shift+Ctrl+3
 Shift+Ctrl+4
 Shift+Ctrl+5
 Shift+Ctrl+6
 Shift+Ctrl+7
 Shift+Ctrl+8
 Shift+Ctrl+9

2
3
4
5
6
7
8
9

0
1

 Ctrl+0
 Ctrl+1
 Ctrl+2
 Ctrl+3
 Ctrl+4
 Ctrl+5
 Ctrl+6
 Ctrl+7
 Ctrl+8
 Ctrl+9

2
3
4
5
6
7
8
9

Compile

Real abs
Tab ize
Auto ndent

ordStar keys
ditor Font

S ntax Highlighting
E itor Colors
ecall Open Files

T olbar...
ile Formats...
lobal Defines...

De ugger/Programer....
I clude Dirs...

T
S
I

W
E
y
d

R
o

F
G

b
n

B
C
K
P
T

ackground
omments
eywords
reProcessor
ext

C/ASM ist
ymbol Map

Call ree
St tistics

ata Sheet
alid Fuses

Val d Interrupts
inary File
OD Debug File

L
S

T
a

D
V

i
B
C

D
e

F
N
S

i
x

P
M

t

evice Editor
D vice Selector
ile Compare
umeric Converter
erial Port Monitor

D sassembler
E tract Cal Data
rogram Chip
PLAB

In ernet

V
e
D

a

iew Recent Changes
-mail Tech Support
ownload Updates

D ta Sheets

A
C
I
K
L
E
B
P
D
O
S

bout
ontents

ndex
eyword at cursor
ast Error
ditor
uilt in functions
reprocessor cmds
ata types
perators

tatements

New Creates a new file
Open Opens a file into the editor. If there are no other files open

then the project name is set to this files name. Ctrl-O is the
shortcut.

Save Saves the file currently selected for editing. Ctrl-S is the
shortcut.

Save As Prompts for a filename to save the currently selected file.
Save All All open files are saved to disk
Close Closes the file currently open for editing. Note that while a

file is open in PCW for editing no other program may access
the file. Shift F11 is the shortcut.

Close All Closes all files.
Print Prints the currently selected file.
Printer Setup Allows the selection of a printer and the printer settings.
Exit Terminates PCW

7

C Compiler Reference Manual
PCW IDE

Project Menu

New Creates a new project. A project may be created manually

or via a wizard. If created manually only a .PJT file is
created to hold basic project information. An existing .C main
file may be specified or an empty one may be created. The
wizard will allow the user to specify project parameters and
when complete a .C, .H and .PJT file are created. Standard
source code and constants are generated based on the
specified project parameters.

NEW PROJECT (Speed button or File|New Project) This command will bring

up a number of fill-in-the-blank forms about your new
project. RS232 I/O and 12C characteristics, timer options,
interrupts used, A/D options, drivers needed and pin names
all may be specified in the forms. When drivers are
selected, required pins will be selected by the tool and pins
that can be combined will be. Final pins selections may be
edited by the user. After all selections are made the initial .c
and .h files are created with #defines, #includes and
initialization commands required for your project. This is a
fast way to start a new project. Once the files are created
you cannot return to the menus to make further changes.

Open A .PJT file is specified and the main source file is loaded.

Open All Files A .PJT file is specified and all files used in the project are

opened. In order for this function to work the program must
have been compiled in order for the include files to become
known.

Find Text In Project Searches all files in a project for a given text string.

Print All Files All files in the project are printed. In order for this function to

work the program must have been compiled in order for the
include files to become known.

Include Dirs Allows the specification of each directory to be used to

search for include files for just this project. This information
is saved in the .PJT file.

Close Project Closes all files associated with the current project.

8

C Compiler Reference Manual
PCW IDE

Edit Menu

Undo Undoes the last deletion.

Cut Moves the selected text from the file to the clipboard.

Copy Copies the selected text to the clipboard.

Paste Copies the clipboard contents to the cursor location.

Copy from File Copies the contents of a file to the cursor location.

Paste to File Pastes the selected text to a file.

Find Searches for a specified string in the file.

Replace Replaces a specified string with a new string.

Next Performs another Find or Replace.

Find matching } or) The text will be highlighted up to the corresponding } or

). The editor will start counting the open and close curly
braces and highlight the closing item when they are
balanced. Simply place the cursor before or on the
element you need to find a match for and click, and the
match will be highlighted.

Toggle Bookmark Sets a bookmark (0-9) at the cursor location.

Goto Bookmark Move the cursor to the specified bookmark (0-9).

Next Window Selects the next open file as the current file for editing.

Previous Window Selects the previous open file as the current file for

editing.

Options Menu

Real tabs When selected the editor inserts a tab character (ASCII

9) when the TAB key is pressed. When it is not selected
and the TAB key is pressed spaces are inserted up to
the next tab position.

9

C Compiler Reference Manual
PCW IDE

Tab size Determines the number of characters between tab

positions. Tabs allow you to set the number of space
equated by a tab and whether or not the tabs are
converted to spaces or left as tabs.

Auto indent When selected and the ENTER is pressed the cursor

moves to the next line under the first character in the
previous line. When not selected the ENTER always
moves to the beginning of the next line.

WordStar keys When selected the editing keys are WordStar style.

WordStar commands will enable additional keystrokes
recognized by the editors. See EDITOR for more
information.

Syntax Highlighting When checked the editor highlights in color C keywords

and comments.

Toolbar Allows the selection of what menu items appear as

buttons on the toolbar.

Editor Font Selects the editor font.

Editor Colors Selects the colors used for syntax highlighting.

Recall Open Files When selected PCW will always start with the same files

open as were open when it last shut down. When not
selected PCW always starts with no files open.

File Formats Allows selection of the output file formats,

Programmer options Allows the specification of the device programmer to be

used when the PROGRAM CHIP tool is selected.

Include Dirs Allows the specification of each directory to be used to

search for include files by default for newly created
projects. This has no effect on projects already created
(use Project|Include Dirs to change those).

Global Definitions Allows the setting of #defines to be used in compiling.

This is the same as having some #defines at the top of

10

C Compiler Reference Manual
PCW IDE

your program. This may be used for example to set
debugging defines without changing the code.

Compile Options

PCB/PCM (speed button or compile|PCx)
This command will compile your program. Use PCB for the 12-bit chips and
PCM for the 14-bit chips.

PCW Compile
Compiles the current project (name is in lower right) using the current compiler
(name is on the toolbar).

Debug File Options
Microchip COD Standard PIC debug file
RICE16 MAP Used only be older RICE16 S/W
COD no _ COD file with no _ in id names

List Format Options
Simple A basic format with C code and ASM
Standard The MPASM standard format with machine code
Old Older MPASM format

Object file extension The file extension for a HEX file

List file extension The file extension for a list file

Object File Options
8 bit HEX 8 Bit Intel HEX file
16 bit HEX 16 bit Intel HEX file
Binary Straight binary (No fuse info)

Error File Options
Standard Current Microchip standard
Original Older Microchip standard

View Menu

C/ASM Opens the listing file in the read only mode. The file must

have been compiled to view the list file. If open this file will
be updated after each compile. The listing file shows each C

11

C Compiler Reference Manual
PCW IDE

source line and the associated assembly code generated for
the line.

 For Example:

 ……………delay_ms(3);
 0F2: MOVLW 05
 0F3: MOVWF 08
 0F4: DESCZ 08,F
 0F5: GOTO 0F4
 …………….while input(pin_0));
 0F6: BSF 0B,3

Symbol Map Opens the symbol file in the read only mode. The file must
have been compiled to view the symbol file. If open this file
will be updated after each compile. The symbol map shows
each register location and what program variables are saved
in each location.

MAP Displays the RAM memory map for the program last

compiled. The map indicates the usage of each RAM
location. Some locations have multiple definitions since
RAM is reused depending on the current procedure being
executed.

 For Example:

 08 @SCRATCH
 09 @SCRATCH
 0A TRIS_A
 0B TRIS_B
 0C MAIN.SCALE
 0D MAIN.TIME

0E GET_SCALE.SCALE
 0E PUTHEX.N
 0E MAIN.@SCRATCH

Call Tree Opens the tree file in the read only mode. The file must
have been compiled to view the tree file. If open this file will
be updated after each compile. The call tree shows each
function and what functions it calls along with the ROM and
RAM usage for each.

A (inline) will appear after inline procedures that begin with
@. After the procedure name is a number of the form s/n
where s is the page number of the procedure and n is the
number is locations of code storage is required. If S is ?
then this was the last procedure attempted when the

12

C Compiler Reference Manual
PCW IDE

compiler ran out of ROM space. RAM=xx indicates the total
RAM required for the function.

 For Example:

 Main 0/30
 INIT 0/6
 WAIT_FOR_HOST 0/23 (Inline)
 DELAY_US 0/12
 SEND_DATA 0/65

Statistics Opens the stats file in the read only mode. The file must

have been compiled to view the stats file. If open this file will
be updated after each compile. The statistics file shows each
function, the ROM and RAM usage by file, segment and
name.

Data Sheet This tool will bring up Acrobat Reader with the manufacture

data sheet for the selected part. If data sheets were not
copied to disk then the CCS CD ROM or a manufacture CD
ROM must be inserted.

Binary file Opens a binary file in the read only mode. The file is shown

in HEX and ASCII.

COD Debug file Opens a debug file in the read only mode. The file is shown

in an interpreted form.

Valid Fuses Shows a list of all valid keywords for the #fuses directive for

this device.

Valid Interrupts Shows a list of all valid keywords for the #int_xxxx directive

and enable/disable _interrupts for this device.

Status Line Click on the left hand side of the status line to GOTO a

specific line number.

Tools Menu

Device Editor This tool allows the essential characteristics for each

supported processor to be specified. This tool edits a
database used by the compiler to control the compilation.
CCS maintains this database (Devices.dat) however users
may want to add new devices or change the entries for a
device for a special application. Be aware if the database is

13

C Compiler Reference Manual
PCW IDE

changed and then the software is updated the changes will
be lost. Save your DEVICES.DAT file during an update to
prevent this.

Device selector This tool uses the device database to allow a parametric

selection of devices. By selecting key characteristics the
tool displays all eligible devices.

File Compare Compares two files. When source file is selected then a

normal line by line compare is done. When list file is
selected the compare may be set to ignore RAM and/or
ROM addresses to make the comparison more meaningful.
For example if an asm line was added at the beginning of
the program a normal compare would flag every line as
different. By ignoring ROM addresses then only the extra
line is flagged as changed. Two output formats are available.
One for display and one for files or printing.

Numeric Converter A conversion tool to convert between decimal, hex and float.

Serial Port Monitor An easy to use tool to connect to a serial port. This tool is

convenient to communicate with a target program over an
RS232 link. Data is shown in as ASCII characters and as
raw hex.

Disassembler This tool will take as input a HEX file and will output ASM.

The ASM may be in a form that can be used as inline ASM.

This command will take a HEX file and generate an
assembly file so that selected sections can be extracted and
inserted into your C programs as inline assembly. Options
will allow the selection of the assembly format.
• 12 or 14 bit opcodes
• Address, C, MC ASM labels
• Hex or Binary
• Simple, ASM, C numbers

Extract Cal Data This tool will take as input a HEX file and will extract the

calibration data to a C include file. This may be used to
maintain calibration data for a UV erasable part. By
including the include file in a program the calibration data will
be restored after re-burning the part.

14

C Compiler Reference Manual
PCW IDE

Program Chip This simply invokes device programmer software with the

output file as specified in the Compile\Options window. This
command will invoke the device programmer software of
your choice. Use the compile options to establish the
command line.

MPLAB Invokes MPLAB with the current project. The project is

closed so MPLAB may modify the files if needed. When
MPLAB is invoked this way PCW stays minimized until
MPLAB terminates and then the project is reloaded.

Internet These options invoke your WWW browser with the

requested CCS Internet page:
• View recent changes Shows version numbers and

changes for the last couple of months.
• e-mail technical support Starts your e-mail program with

CCS technical support as the To: address.
• Download updates Goes to the CCS download

page. Be sure to have your reference number ready.
• Data Sheets A list of various manufacture data

sheets for devices CCS has device drivers for (such as
EEPROMs, A/D converters, RTC...)

Help Menu

About Shows the version of the IDE and each installed compiler.
Contents The help file table of contents.
Index The help file index.
Keyword at cursor Does an index search for the keyword at the cursor location.

Just press F1 to use this feature.
F12 Bring up help index
Shift F12 Bring up editor help

15

C Compiler Reference Manual
PCW IDE

PCW Editor Keys
Cursor Movement
Left Arrow Move cursor one character to the left
Right Arrow Move cursor one character to the right
Up Arrow Move cursor one line up
Down Arrow Move cursor one line down
Ctrl Left Arrow Move cursor one word to the left
Ctrl Right Arrow Move cursor one word to the right
Home Move cursor to start of line
End Move cursor to end of line
Ctrl PgUp Move cursor to top of window
Ctrl PgDn Move cursor to bottom of window
PgUp Move cursor to previous page
PgDn Move cursor to next page
Ctrl Home Move cursor to beginning of file
Ctrl End Move cursor to end of file
Ctrl S Move cursor one character to the left
Ctrl D Move cursor one character to the right
Ctrl E Move cursor one line up
Ctrl X ** Move cursor one line down
Ctrl A Move cursor one word to the left
Ctrl F Move cursor one word to the right
Ctrl Q S Move cursor to top of window
Ctrl Q D Move cursor to bottom of window
Ctrl R Move cursor to beginning of file
Ctrl C * Move cursor to end of file
Shift ~ Where ~ is any of the above: Extend selected

area as cursor moves

16

C Compiler Reference Manual
PCW IDE

Editing Commands
F4 Select next text with matching () or {}
Ctrl # Goto bookmark # 0-9
Shift Ctrl # Set bookmark # 0-9
Ctrl Q # Goto bookmark # 0-9
Ctrl K # Set bookmark # 0-9
Ctrl W Scroll up
Ctrl Z * Scroll down
Del Delete the following character
BkSp Delete the previous character
Shift BkSp Delete the previous character
Ins Toggle Insert/Overwrite mode
Ctrl Z ** Undo last operation
Shift Ctrl Z Redo last undo
Alt BkSp Restore to original contents
Ctrl Enter Insert new line
Shift Del Cut selected text from file
Ctrl Ins Copy selected text
Shift Ins Paste
Tab Insert tab or spaces
Ctrl Tab Insert tab or spaces
Ctrl P ~ Insert control character ~ in text
Ctrl G Delete the following character
Ctrl T Delete next word
Ctrl H Delete the previous character
Ctrl Y Delete line
Ctrl Q Y Delete to end of line
Ctrl Q L Restore to original contents
Ctrl X ** Cut selected text from file
Ctrl C ** Copy selected text
Ctrl V Paste
Ctrl K R Read file at cursor location
Ctrl K W Write selected text to file
Ctrl-F ** Find text
Ctrl-R ** Replace text
F3 Repeat last find/replace

* Only when WordStar mode selected
** Only when WordStar mode is not selected

17

C Compiler Reference Manual
PCW IDE

Project Wizard

The new project wizard makes starting a new project easier.

After starting the Wizard you are prompted for the name for your new main c file.
This file will be created along with a corresponding .h file.

The tabbed notebook that is displayed allows the selection of various project
parameters. For example:
• General Tab -> Select the device and clock speed
• Communications tab --> Select RS232 ports
• I/O Pins tab --> Select you own names for the various pins

When any tab is selected you may click on the blue square in the lower right and
the wizard will show you what code is generated as a result of your selections in
that screen. After clicking OK all the code is generated and the files are opened
in the PCW editor.

This command will bring up a number of fill-in-the-blank forms about your new
project. RS232 I/O and 12C characteristics, timer options, interrupts used, A/D
options, drivers needed and pin names all may be specified in the forms. When
drivers are selected, required pins will be selected by the tool and pins that can
be combined will be. Final pins selections may be edited by the user. After all
selections are made an initial .c and .h files are created with #defines, #includes
and initialization commands require for your project. This is a fast way to start a
new project. Once the files are created you cannot return to the menus to make
further changes.

18

C Compiler Reference Manual
Pre-Processor

PRE-PROCESSOR
Pre-Processor Command Summary
Standard C Device Specification
#DEFINE IS STRING 26 #DEVICE CHIP 27
#ELSE 30 #ID NUMBER 29
#ENDIF 30 #ID "filename" 29
#ERROR 28 #ID CHECKSUM 29
#IF expr 30 #FUSES options 28
#IFDEF id 31 #TYPE type=type 42
#INCLUDE "FILENAME" 32 Built-in Libraries
#INCLUDE <FILENAME> 32 #USE DELAY CLOCK 43
#LIST 35 #USE FAST_IO 44
#NOLIST 36 #USE FIXED_IO 44
#PRAGMA cmd 40 #USE I2C 45
#UNDEF id 43 #USE RS232 46
Function Qualifier #USE STANDARD_IO 47
#INLINE 33 Memory Control
#INT_DEFAULT 34 #ASM 20
#INT_GLOBAL 35 #BIT id=const.const 23
#INT_xxx 33 #BIT id=id.const 23
#SEPARATE 42 #BYTE id=const 24
Compiler Control #BYTE id=id 24
#CASE 25 #LOCATE id=const 36
#OPT n 37 #ENDASM 20
#PRIORITY 40 #RESERVE 41
#ORG 37 #ROM 41
 #ZERO_RAM 48
 Pre-Defined Identifier
 _ _ DATE_ _ 25
 _ _ DEVICE_ _ 27
 _ _ PCB _ _ 39
 _ _ PCM_ _ 39
 _ _ PCH_ _ 39

19

C Compiler Reference Manual
Pre-Processor

Pre-Processor Directives

Pre-processor directives all begin with a # and are followed by a specific
command. Syntax is dependent on the command. Many commands do not allow
other syntactical elements on the remainder of the line. A table of commands
and a description is listed on the previous page.

Several of the pre-processor directives are extensions to standard C. C provides
a pre-processor directive that compilers will accept and ignore or act upon the
following data. This implementation will allow any pre-processor directives to
begin with #PRAGMA. To be compatible with other compilers, this may be used
before non-standard features.

Examples: Both of the following are valid

#INLINE
#PRAGMA INLINE

#ASM
#ENDASM

Syntax: #asm
 or

#asm ASIS
 code

 #endasm

Elements: code is a list of assembly language instructions

Purpose: The lines between the #ASM and #ENDASM are treated as

assembly code to be inserted. These may be used
anywhere an expression is allowed. The syntax is
described on the following page. The predefined variable
RETURN may be used to assign a return value to a
function from the assembly code. Be aware that any C
code after the #ENDASM and before the end of the function
may corrupt the value.

 If the second form is used with ASIS then the compiler will

not do any automatic bank switching for variables that can
not be accessed from the current bank. The assembly code
is used as-is. Without this option the assembly is
augmented so variables are always accessed correctly by
adding bank switching where needed.

20

C Compiler Reference Manual
Pre-Processor

Examples:

int find_parity (int data) {

int count;
#asm
movlw 0x8
movwf count
movlw 0
loop:
xorwf data,w
rrf data,f
decfsz count,f
goto loop
movwf _return_
#endasm
}

Example Files: ex_glint.c

Also See: None

21

C Compiler Reference Manual
Pre-Processor

12 Bit and 14 Bit
ADDWF f,d ANDWF f,d
CLRF f CLRW
COMF f,d DECF f,d
DECFSZ f,d INCF f,d
INCFSZ f,d IORWF f,d
MOVF f,d MOVPHW
MOVPLW MOVWF f
NOP RLF f,d
RRF f,d SUBWF f,d
SWAPF f,d XORWF f,d
BCF f,b BSF f,b
BTFSC f,b BTFSS f,b
ANDLW k CALL k
CLRWDT GOTO k
IORLW k MOVLW k
RETLW k SLEEP
XORLW OPTION
TRIS k
 14 Bit
 ADDLW k
 SUBLW k
 RETFIE
 RETURN

f may be a constant (file number) or a simple variable
d may be a constant (0 or 1) or W or F
f,b may be a file (as above) and a constant (0-7) or it may be just a bit variable

reference.
k may be a constant expression

Note that all expressions and comments are in C like syntax.

22

C Compiler Reference Manual
Pre-Processor

PIC 18
ADDWF f,d,a ADDWFC f,d,a ANDWF f,d,a
CLRF f,a COMF f,d,a CPFSEQ f,a
CPFSGT f,a CPFSLT f,a DECF f,d,a
DECFSZ f,d,a DCFSNZ f,d,a INCF f,d,a
INFSNZ f,d,a IORWF f,d,a MOVF f,d,a
MOVFF fs, fd MOVWF f,a MULWF f,a
NEGF f,a RLCF f,d,a RLNCF f,d,a
RRCF f,d,a RRNCF f,d,a SETF f,a
SUBFWB f,d,a SUBWF f,d,a SUBWFB f,d,a
SWAPF f,d,a TSTFSZ f,a XORWF f,d,a
BCF f,b,a BSF f,b,a BTFSC f,b,a
BTFSS f,b,a BTG f,d,a BC n
BN n BNC n BNN n
BNOV n BNZ n BOV n
BRA n BZ n CALL n,s
CLRWDT - DAW - GOTO n
NOP - NOP - POP -
PUSH - RCALL n RESET -
RETFIE s RETLW k RETURN s
SLEEP - ADDLW k ANDLW k
IORLW k LFSR f,k MOVLB k
MOVLW k MULLW k RETLW k
SUBLW k XORLW k TBLRD*
TBLRD*+ TBLRD*- TBLRD+*
TBLWT* TBLWT*+ TBLWT*-
TBLWT+*

#BIT

Syntax: #bit id = x.y

Elements: id is a valid C identifier,
 x is a constant or a C variable,
 y is a constant 0-7.

Purpose: A new C variable (one bit) is created and is placed in

memory at byte y and bit x. This is useful to gain access in

23

C Compiler Reference Manual
Pre-Processor

C directly to a bit in the processors special function register
map. It may also be used to easily access a bit of a
standard C variable.

Examples:

#bit T0IF = 0xb.2
...
T0IF = 0; // Clear Timer 0 interrupt flag

int result;
#bit result_odd = result.0
...
if (result_odd)
...

Example Files: ex_glint.c

Also See: #byte, #reserve, #locate

#BYTE

Syntax: #byte id = x

Elements: id is a valid C identifier,
 x is a C variable or a constant

Purpose: If the id is already known as a C variable then this will locate

the variable at address x. In this case the variable type does
not change from the original definition. If the id is not know a
new C variable is created and placed at address x with the
type int (8 bit).

 Warning: In both cases memory at x is not exclusive to this

variable. Other variables may be located at the same
location. In fact when x is a variable then id and x share the
same memory location.

Examples:

#byte status = 3
#byte b_port = 6

struct {
 short int r_w;
 short int c_d;
 int unused : 2;

24

C Compiler Reference Manual
Pre-Processor

 int data : 4; } a_port;
#byte a_port = 5
...
a_port.c_d = 1;

Example Files: ex_glint.c

Also See: #bit, #locate, #reserve

#CASE

Syntax: #case

Elements: None

Purpose: Will cause the compiler to be case sensitive. By default the

compiler is case insensitive.

 Warning: Not all the CCS example programs, headers and

drivers have been tested with case sensitivity turned on.

Examples:

#case

int STATUS;

void func() {
int status;
...
STATUS = status; // Copy local status to global
}

Example Files: ex_cust.c

Also See: None

_ _ DATE_ _

Syntax: _ _ date_ _

Elements: None

Purpose: This pre-processor identifier is replaced at compile time with

the date of the compile in the form: "30-MAY-01"

25

C Compiler Reference Manual
Pre-Processor

Examples:

printf("Software was compiled on ");
printf(__DATE__);

Example Files: None

Also See: None

#DEFINE

Syntax: #define id text
 or
 #define id(x,y...) text

Elements: id is a preprocessor identifier, text is any text, x,y and so on

are local preprocessor identifiers, in this form there may be
one or more identifiers separated by commas.

Purpose: Used to provide a simple string replacement of the ID with

the given text from this point of the program and on.

 In the second form (a C macro) the local identifiers are

matched up with similar identifiers in the text and they are
replaced with text passed to the macro where it is used.

If the text contains a string of the form #idx then the result
upon evaluation will be the parameter id concatenated with
the string x.

If the text contains a string of the form idx##idy then
parameter idx is concatenated with parameter idy forming a
new identifier.

Examples:

#define BITS 8
a=a+BITS; //same as a=a+8;

#define hi(x) (x<<4)
a=hi(a); //same as a=(a<<4);

Example Files: ex_stwt.c, ex_macro.c

Also See: #undef, #ifdef, #ifndef

26

C Compiler Reference Manual
Pre-Processor

#DEVICE

Syntax: #device chip options

Elements: chip is the name of a specific processor (like: PIC16C74),

To get a current list of supported devices:

START | RUN | CCSC +Q

 Options are qualifiers to the standard operation of the

device. Valid options are:
• *=5 Use 5 bit pointers (for 12 bit parts)
• *=8 Use 8 bit pointers (12 and 14 bit parts)
• *=16 Use 16 bit pointers (for 14 bit parts)
• ADC=x Where x is the number of bits read_adc()

should return
• ICD=TRUE Generates code compatible with Microchips

ICD debugging hardware.

 Both chip and options are optional, so multiple #device lines

may be used to fully define the device. Be warned however
a #device with a chip will clear all previous #device and
#fuse settings.

Purpose: Defines the target processor. Every program must have

exactly one #define with a chip.

Examples:

#device PIC16C74
#device PIC16C67 *=16
#device *=16 ICD=TRUE
#device PIC16F877 *=16 ADC=10

Example Files: ex_mxram.c, ex_icd.c, 16c74.h

Also See: read_adc()

_ _DEVICE_ _

Syntax: _ _ device _ _

Elements: None

27

C Compiler Reference Manual
Pre-Processor

Purpose: This pre-processor identifier is defined by the compiler with

the base number of the current device (from a #device).
The base number is usually the number after the C in the
part number. For example the PIC16C622 has a base
number of 622.

Examples:

#if __device__==71
setup_port_a(ALL_DIGITAL);
#endif

Example Files: None

Also See: #device

#ERROR

Syntax: #error text

Elements: text is optional and may be any text

Purpose: Forces the compiler to generate an error at the location this

directive appears in the file. The text may include macros
that will be expanded for the display. This may be used to
see the macro expansion. The command may also be used
to alert the user to an invalid compile time situation.

Examples:

#if BUFFER_SIZE>16
#error Buffer size is too large
#endif
#error Macro test: min(x,y)

Example Files: ex_psp.c

Also See: None

#FUSES

Syntax: #fuse options

Elements: options vary depending on the device. A list of all valid

options has been put at the top of each devices .h file in a

28

C Compiler Reference Manual
Pre-Processor

comment for reference. The PCW device edit utility can
modify a particular devices fuses. The PCW pull down menu
VIEW | Valid fuses will show all fuses with their descriptions.

 Some common options are:

• LP, XT, HS, RC
• WDT, NOWDT
• PROTECT, NOPROTECT
• PUT, NOPUT (Power Up Timer)
• BROWNOUT, NOBROWNOUT

Purpose: This directive defines what fuses should be set in the part

when it is programmed. This directive does not affect the
compilation; however, the information is put in the output
files. If the fuses need to be in Parallax format, add a PAR
option. SWAP has the special function of swapping (from
the Microchip standard) the high and low BYTES of non-
program data in the Hex file. This is required for some
device programmers.

Examples:

#fuses HS,NOWDT

Example Files: ex_sqw.c

Also See: None

#ID

Syntax: #ID number 16
 #ID number, number, number, number
 #ID "filename"
 #ID CHECKSUM

Elements: Number16 is a 16 bit number, number is a 4 bit number,

filename is any valid PC filename and checksum is a
keyword.

Purpose: This directive defines the ID word to be programmed into the

part. This directive does not affect the compilation but the
information is put in the output file.

29

C Compiler Reference Manual
Pre-Processor

 The first syntax will take a 16-bit number and put one nibble

in each of the four ID words in the traditional manner. The
second syntax specifies the exact value to be used in each
of the four ID words.

 When a filename is specified the ID is read from the file.

The format must be simple text with a CR/LF at the end.
The keyword CHECKSUM indicates the device checksum
should be saved as the ID.

Examples:

#id 0x1234
#id "serial.num"
#id CHECKSUM

Example Files: ex_cust.c

Also See: None

#IF expr
#ELSE
#ELIF
#ENDIF

Syntax: #if expr
 code
 #elif expr // Optional, any number may be used
 code

#else // Optional
 code

#endif

Elements: expr is an expression with constants, standard operators

and/or preprocessor identifiers. Code is any standard c
source code.

Purpose: The pre-processor evaluates the constant expression and if

it is non-zero will process the lines up to the optional #ELSE
or the #ENDIF.

 Note: you may NOT use C variables in the #IF only

preprocessor identifiers created via #define.

30

C Compiler Reference Manual
Pre-Processor

The preprocessor expression DEFINED(id) may be used to
return 1 if the id is defined and 0 if it is not.

Examples:

#if MAX_VALUE > 255
long value;
#else
int value;
#endif

Example Files: ex_extee.c

Also See: #ifdef, #ifndef

#IFDEF
#IFNDEF
#ELSE
#ELIF
#ENDIF

Syntax: #ifdef id
 code

#elif
 code

#else
 code
 #endif

#ifndef id
 code

#elif
 code
 #else
 code
 #endif

Elements: id is a preprocessor identifier, code is nay valid C source

code.

Purpose: This directive acts much like the #IF except that the

preprocessor simply checks to see if the specified ID is
known to the preprocessor (created with a #DEFINE).

31

C Compiler Reference Manual
Pre-Processor

#IFDEF checks to see if defined and #IFNDEF checks to see
if it is not defined.

Examples:

#define debug // Comment line out for no debug

...
#ifdef DEBUG
printf("debug point a");
#endif

Example Files: ex_sqw.c

Also See: #if

#INCLUDE

Syntax: #include <filename>
 or
 #include "filename"

Elements: filename is a valid PC filename. It may include normal drive

and path information.

Purpose: Text from the specified file is used at this point of the

compilation. If a full path is not specified the compiler will
use the list of directories specified for the project to search
for the file. If the filename is in "" then the directory with the
main source file is searched first. If the filename is in <>
then the directory with the main source file s searched last.

Examples:

#include <16C54.H>

#include <C:\INCLUDES\COMLIB\MYRS232.C>

Example Files: ex_sqw.c

Also See: None

32

C Compiler Reference Manual
Pre-Processor

#INLINE

Syntax: #inline

Elements: None

Purpose: Tells the compiler that the function immediately following the

directive is to be implemented INLINE. This will cause a
duplicate copy of the code to be placed everywhere the
function is called. This is useful to save stack space and to
increase speed. Without this directive the compiler will
decide when it is best to make procedures INLINE.

Examples:

#inline
swapbyte(int &a, int &b) {
int t;
t=a;
a=b;
b=t;
}

Example Files: ex_cust.c

Also See: #separate

#INT_xxxx

Syntax: #INT_AD Analog to digital conversion complete
 #INT_ADOF Analog to digital conversion timeout
 #INT_BUSCOL Bus collision
 #INT_BUTTON Pushbutton
 #INT_CCP1 Capture or Compare on unit 1
 #INT_CCP2 Capture or Compare on unit 2
 #INT_COMP Comparator detect
 #INT_EEPROM write complete
 #INT_EXT External interrupt
 #INT_EXT1 External interrupt #1
 #INT_EXT2 External interrupt #2
 #INT_I2C I2C interrupt (only on 14000)
 #INT_LCD activity
 #INT_LOWVOLT Low voltage detected
 #INT_PSP Parallel Slave Port data in
 #INT_RB Port B any change on B4-B7

33

C Compiler Reference Manual
Pre-Processor

 #INT_RC Port C any change on C4-C7
 #INT_RDA RS232 receive data available
 #INT_RTCC Timer 0 (RTCC) overflow
 #INT_SSP SPI or I2C activity
 #INT_TBE RS232 transmit buffer empty
 #INT_TIMER0 Timer 0 (RTCC) overflow
 #INT_TIMER1 Timer 1 overflow
 #INT_TIMER2 Timer 2 overflow
 #INT_TIMER3 Timer 3 overflow

Elements: None

Purpose: These directives specify the following function is an interrupt

function. Interrupt functions may not have any parameters.
Not all directives may be used with all parts. See the
devices .h file for all valid interrupts for the part or in PCW
use the pull down VIEW | Valid Ints

 The compiler will generate code to jump to the function when

the interrupt is detected. It will generate code to save and
restore the machine state, and will clear the interrupt flag.
The application program must call
ENABLE_INTERRUPTS(INT_xxxx) to initially activate the
interrupt along with the ENABLE_INTERRUPTS(GLOBAL)
to enable interrupts.

Examples:

#int_ad
adc_handler() {
adc_active=FALSE;
}

Example Files: See ex_sisr.c and ex_stwt.c for full example programs.

Also See: enable_interrupts(), disable_interrupts(), #int_default,

#int_global

#INT_DEFAULT

Syntax: #int_default

Elements: None

34

C Compiler Reference Manual
Pre-Processor

Purpose: The following function will be called if the PIC triggers an

interrupt and none of the interrupt flags are set. If an
interrupt is flagged, but is not the one triggered, the
#INT_DEFAULT function will get called.

Examples:

#int_default
default_isr() {
 printf("Unexplained interrupt\r\n");
}

Example Files: None

Also See: #int_xxxx, #int_global

#INT_GLOBAL

Syntax: #int_global

Elements: None

Purpose: This directive causes the following function to replace the

compiler interrupt dispatcher. The function is normally not
required and should be used with great caution. When used,
the compiler does not generate start-up code or clean-up
code, and does not save the registers.

Examples:

#int_global
isr() { // Will be located at location 4
#asm
bsf isr_flag
retfie
#endasm
}

Example Files: ex_glint.c

Also See: #int_xxxx

#LIST

Syntax: #list

35

C Compiler Reference Manual
Pre-Processor

Elements: None

Purpose: #List begins inserting or resumes inserting source lines into

the .LST file after a #NOLIST.

Examples:

#NOLIST // Don't clutter up the list file
#include <cdriver.h>
#LIST

Example Files: 16c74.h

Also See: #nolist

#LOCATE

Syntax: #locate id=x

Elements: id is a C variable,
 x is a constant memory address

Purpose: #LOCATE works like #BYTE however in addition it prevents

C from using the area.

Examples:

// This will locate the float variable at 50-53
// and C will not use this memory for other
// variables automatically located.
float x;
#locate x=0x50

Example Files: ex_glint.c

Also See: #byte, #bit, #reserve

#NOLIST

Syntax: #NOLIST

Elements: None

Purpose: Stops inserting source lines into the .LST file (until a #LIST)

Examples:

36

C Compiler Reference Manual
Pre-Processor

#NOLIST // Don't clutter up the list file
#include <cdriver.h>
#LIST

Example Files: 16c74.h

Also See: #list

#OPT

Syntax: #OPT n

Elements: n is the optimization level 0-9

Purpose: The optimization level is set with this directive. The

directive applies to the entire program and may appear
anywhere in the file. Optimization level 5 will set the level to
be the same as the PCB,PCM,PCH stand-alone compilers.
The PCW default is 9 for full optimization. This may be used
to set a PCW compile to look exactly like a PCM compile for
example. It may also be used if an optimization error is
suspected to reduce optimization.

Examples:

#opt 5

Example Files: None

Also See: None

#ORG

Syntax: #org start, end
 or
 #org segment
 or
 #org start, end {}
 or
 #org start, end auto=0

Elements: start is the first ROM location (word address) to use, end is

the last ROM location, segment is the start ROM location
from a previous #org

37

C Compiler Reference Manual
Pre-Processor

Purpose: This directive will fix the following function or constant

declaration into a specific ROM area. End may be omitted if
a segment was previously defined if you only want to add
another function to the segment.

 Follow the ORG with a {} to only reserve the area with

nothing inserted by the compiler.

The RAM for a ORG'ed function may be reset to low memory
so the local variables and scratch variables are placed in low
memory. This should only be used if the ORG'ed function will
not return to the caller. The RAM used will overlap the RAM
of the main program. Add a AUTO=0 at the end of the
#ORG line.

Examples:

#ORG 0x1E00, 0x1FFF
MyFunc() {
//This function located at 1E00
}

#ORG 0x1E00
Anotherfunc(){
// This will be somewhere 1E00-1F00
}

#ORG 0x800, 0x820 {}
//Nothing will be at 800-820

#ORG 0x1C00, 0x1C0F
CHAR CONST ID[10}= {"123456789"};
//This ID will be at 1C00
//Note some extra code will
//proceed the 123456789

#ORG 0x1F00, 0x1FF0
Void loader (){
.
.
.
}

Example Files: loader.c

Also See: #rom

38

C Compiler Reference Manual
Pre-Processor

_ _PCB_ _

Syntax: _ _ pcb _ _

Elements: None

Purpose: The PCB compiler defines this pre-processor identifier. It

may be used to determine if the PCB compiler is doing the
compilation.

Examples:

#ifdef __pcb__
#device PIC16c54
#endif

Example Files: ex_sqw.c

Also See: __pcm__, __pch__

_ _PCM_ _

Syntax: _ _ pcm _ _

Elements: None

Purpose: The PCM compiler defines this pre-processor identifier. It

may be used to determine if the PCM compiler is doing the
compilation.

Examples:

#ifdef __pcm__
#device PIC16c71
#endif

Example Files: ex_sqw.c

Also See: __pcb__, __pch__

_ _ PCH _ _

Syntax: _ _ pch _ _

Elements: None

39

C Compiler Reference Manual
Pre-Processor

Purpose: The PCH compiler defines this pre-processor identifier. It

may be used to determine if the PCH compiler is doing the
compilation.

Examples:

#ifdef _ _ PCH _ _
#device PIC18C452
#endif

Example Files: ex_sqw.c

Also See: __pcb__, __pcm__

#PRAGMA

Syntax: #pragma cmd

Elements: cmd is any valid preprocessor directive.

Purpose: This directive is used to maintain compatibility between C

compilers. This compiler will accept this directive before any
other pre-processor command. In no case does this
compiler require this directive.

Examples:

#pragma device PIC16C54

Example Files: ex_cust.c

Also See: None

#PRIORITY

Syntax: #priority ints

Elements: ints is a list of one or more interrupts separated by commas.

Purpose: The priority directive may be used to set the interrupt priority.

The highest priority items are first in the list. If an interrupt is
active it is never interrupted. If two interrupts occur at
around the same time then the higher one in this list will be
serviced first.

40

C Compiler Reference Manual
Pre-Processor

Examples:

#priority rtcc,rb

Example Files: None

Also See: #int_xxxx

#RESERVE

Syntax: #reserve address
 or
 #reserve address, address, address
 or
 #reserve start:end

Elements: address is a ROM address, start is the first address and

end is the last address

Purpose: This directive allows RAM locations to be reserved from use

by the compiler. #RESERVE must appear after the
#DEVICE otherwise it will have no effect.

Examples:

#DEVICE PIC16C74
#RESERVE 0x60:0X6f

Example Files: ex_cust.c

Also See: #org

#ROM

Syntax: #rom address = {list};

Elements: address is a ROM word address, list is a list of words

separated by commas

Purpose: Allows the insertion of data into the .HEX file. In particular,

this may be used to program the '84 data EEPROM, as
shown in the following example.

41

C Compiler Reference Manual
Pre-Processor

 Note that this directive does not prevent the ROM area from

being used. See #ORG to reserve ROM.

Examples:

#rom 0x2100={1,2,3,4,5,6,7,8}

Example Files: None

Also See: #org

#SEPARATE

Syntax: #separate

Elements: None

Purpose: Tells the compiler that the procedure IMMEDIATELY

following the directive is to be implemented SEPARATELY.
This is useful to prevent the compiler from automatically
making a procedure INLINE. This will save ROM space but it
does use more stack space. The compiler will make all
procedures marked SEPARATE, separate, as requested,
even if there is not enough stack space to execute.

Examples:

#separate
swapbyte (int *a, int *b) {
int t;
t=*a;
*a=*b;
*b=t;
}

Example Files: ex_cust.c

Also See: #inline

#TYPE

Syntax: #type standard-type=size

Purpose: By default the compiler treats SHORT as one bit, INT as 8

bits and LONG as 16 bits. The traditional C convention is to
have INT defined as the most efficient size for the target

42

C Compiler Reference Manual
Pre-Processor

processor. This is why it is 8 bits on the PIC. In order to
help with code compatibility a #TYPE directive may be used
to will allow these types to be changed. #TYPE can redefine
these keywords.

 Note that the commas are optional. Since #TYPE may

render some sizes inaccessible (like a one bit int in the
above) four keywords representing the four ints may always
be used: INT1, INT8, INT16 and INT32. Be warned CCS
example programs and include files may not work right if you
use #TYPE in your program.

Examples:

#TYPE SHORT=8, INT=16, LONG=32

Example Files: ex_cust.c

Also See: None

#UNDEF

Syntax: #undef id

Elements: id is a pre-processor id defined via #define

Purpose: The specified pre-processor ID will no longer have meaning

to the pre-processor.

Examples:

#if MAXSIZE<100
#undef MAXSIZE
#define MAXSIZE 100
#endif

Example Files: None

Also See: #define

#USE DELAY

Syntax: #use delay (clock=speed)
 or
 #use delay(clock=speed, restart_wdt)

43

C Compiler Reference Manual
Pre-Processor

Elements: speed is a constant 1-100000000 (1 hz to 100 mhz)

Purpose: Tells the compiler the speed of the processor and enables

the use of the built-in functions: delay_ms() and delay_us().
Speed is in cycles per second. An optional restart_WDT
may be used to cause the compiler to restart the WDT while
delaying.

Examples:

#use delay (clock=20000000)
#use delay (clock=32000, RESTART_WDT)

Example Files: ex_sqw.c

Also See: delay_ms(), delay_us()

#USE FAST_IO

Syntax: #use fast_io (port)

Elements: port is A-G

Purpose: Affects how the compiler will generate code for input and

output instructions that follow. This directive takes effect
until another #use xxxx_IO directive is encountered. The
fast method of doing I/O will cause the compiler to perform
I/O without programming of the direction register. The user
must ensure the direction register is set correctly via
set_tris_X().

Examples:

#use fast_io(A)

Example Files: ex_cust.c

Also See: #use fixed_io, #use standard_io, set_tris_X()

#USE FIXED_IO

Syntax: #use fixed_io (port_outputs=pin, pin?)

Elements: port is A-G, pin is one of the pin constants defined in the

devices .h file.

44

C Compiler Reference Manual
Pre-Processor

Purpose: This directive affects how the compiler will generate code for

input and output instructions that follow. This directive takes
effect until another #use xxx_IO directive is encountered.
The fixed method of doing I/O will cause the compiler to
generate code to make an I/O pin either input or output
every time it is used. The pins are programmed according to
the information in this directive (not the operations actually
performed). This saves a byte of RAM used in standard I/O.

Examples:

#use fixed_io(a_outputs=PIN_A2, PIN_A3)

Example Files: None

Also See: #use fast_io, #use standard_io

#USE I2C

Syntax: #use i2c (options)

Elements: Options are separated by commas and may be:

• MASTER Set the master mode
• SLAVE Set the slave mode
• SCL=pin Specifies the SCL pin (pin is a bit

address)
• SDA=pin Specifies the SDA pin
• ADDRESS=nn Specifies the slave mode address
• FAST Use the fast I2C specification
• SLOW Use the slow I2C specification
• RESTART_WDT Restart the WDT while waiting in

I2C_READ
• NOFORCE_SW Use hardware I2C functions.

Purpose: The I2C library contains functions to implement an I2C bus.

The #USE I2C remains in effect for the I2C_START,
I2C_STOP, I2C_READ, I2C_WRITE and I2C_POLL
functions until another USE I2C is encountered. Software
functions are generated unless the NOFORCE_SW is
specified. The SLAVE mode should only be used with the
built-in SSP.

Examples:

45

C Compiler Reference Manual
Pre-Processor

#use I2C(master, sda=PIN_B0, scl=PIN_B1)

#use I2C(slave,sda=PIN_C4,scl=PIN_C3
 address=0xa0,NOFORCE_SW)

Example Files: ex_extee.c with 2464.c

Also See: i2c_read(), i2c_write()

#USE RS232

Syntax: #use rs232 (options)

Elements: Options are separated by commas and may be:

• BAUD=x Set baud rate to x
• XMIT=pin Set transmit pin
• RCV=pin Set receive pin
• RESTART_WDT Will cause GETC() to clear the WDT as

it waits for a character.
• INVERT Invert the polarity of the serial pins

(normally not needed when level
converter, such as the AX232). May not
be used with the internal SCI.

• PARITY=X Where x is N, E, or O.
• BITS =X Where x is 5-9 (5-7 may not be used

with the SCI).
• FLOAT_HIGH The line is not driven high. This is used

for open collector outputs.
• ERRORS Used to cause the compiler to keep

receive errors in the variable
RS232_ERRORS and to reset errors
when they occur.

• FLOAT_HIGH The line is not driven high. This is used
for open collector outputs.

• BRGH1OK Allow bad baud rates on chips that
have baud rate problems.

• ENABLE=pin The specified pin will be high during
transmit. This may be used to enable
485 transmit.

Purpose: This directive tells the compiler the baud rate and pins used

for serial I/O. This directive takes effect until another
RS232 directive is encountered. The #USE DELAY directive

46

C Compiler Reference Manual
Pre-Processor

must appear before this directive can be used. This directive
enables use of built-in functions such as GETC, PUTC, and
PRINTF.

 When using parts with built-in SCI and the SCI pins are

specified, the SCI will be used. If a baud rate cannot be
achieved within 3% of the desired value using the current
clock rate, an error will be generated.

 The definition of the RS232_ERRORS is as follows:

 No UART:

• Bit 7 is 9th bit for 9 bit data mode (get and put).
• Bit 6 set to one indicates a put failed in float high mode.

 With a UART:

• Used only by get:
• Copy of RCSTA register except:
• Bit 0 is used to indicate a parity error.

Examples:

#use rs232(baud=9600, xmit=PIN_A2,rcv=PIN_A3)

Example Files: ex_sqw.c

Also See: getc(), putc(), printf()

#USE STANDARD_IO

Syntax: #USE STANDARD_IO (port)

Elements: port may be A-G

Purpose: This directive affects how the compiler will generate code for

input and output instructions that follow. This directive takes
effect until another #use xxx_io directive is encountered.
The standard method of doing I/O will cause the compiler to
generate code to make an I/O pin either input or output
every time it is used. On the 5X processors this requires
one byte of RAM for every port set to standard I/O.

 Standard_io is the default I/O method for all ports.

47

C Compiler Reference Manual
Pre-Processor

Examples:

#use standard_io(A)

Example Files: ex_cust.c

Also See: #use fast_io, #use fixed_io

#ZERO_RAM

Syntax: #zero_ram

Purpose: This directive zero's out all of the internal registers that may

be used to hold variables before program execution begins.

Examples:

#zero_ram
void main() {

}

Example Files: ex_cust.c

Also See: None

48

C Compiler Reference Manual
Data Definitions

DATA DEFINITIONS
Data Types

The following tables show the syntax for data definitions. If the keyword
TYPEDEF is used before the definition then the identifier does not allocate space
but rather may be used as a type specifier in other data definitions. If the
keyword CONST is used before the identifier, the identifier is treated as a
constant. Constants must have an initializer and may not be changed at run-
time. Pointers to constants are not permitted.

SHORT is a special type used to generate very efficient code for bit operations
and I/O. Arrays of SHORT and pointers to SHORT are not permitted. Note: []
in the following tables indicate an optional item.

Data Declaration
[type-qualifier] [type-specifier] [declarator];
enum [id] { [id [= cexpr] }
 ^

 |
One or more comma separated

struct [id] { [type-qualifier [[*] id cexpr [cexpr]]]}
or
Union

 ^
 |
One or more
semi-colon
separated

 ^
 |
Zero or more

typedef [type-qualifier] [type-specifier] [declarator];

Type Qualifer
static Variable is globally active and initialized to 0
auto Variable exists only while the procedure is active

This is the default and AUTO need not be used.
extern Is allowed as a qualifier however, has no effect.
register Is allowed as a qualifier however, has no effect.

49

C Compiler Reference Manual
Data Definitions

Type-Specifier
int1 Defines a 1 bit number
int8 Defines an 8 bit number
int16 Defines a 16 bit number
int32 Defines a 32 bit number
char Defines a 8 bit character
float Defines a 32 bit floating point number
short By default the same as int1
int By default the same as int8
long By default the same as int16
double Is a reserved word but is not a supported data type.
void Indicates no specific type

All types, except float, by default are unsigned; however, maybe preceded by
unsigned or signed. Short and long may have the keyword INT following them
with no effect. Also see #TYPE.

declarator
[const] [*] id [cexpr] [= init]
 ^

|
Zero or more comma
separated

The id after ENUM is created as a type large enough to the largest constant in
the list. The ids in the list are each created as a constant. By default the first id
is set to zero and they increment by one. If a =cepr follows an id that id will have
the value of the constant expression and the following list will increment by one.

The :cexpr after an id in a struct or union specifies the number of bits to use for
the id. This number may be 1-8. Multiple [] may be used for multiple dimension
arrays. Structures and unions may be nested. The id after STRUCT may be
used in another STRUCT and the {} is not used to reuse the same structure form
again.

Examples:

int a,b,c,d;
typedef int byte;
typedef short bit;

50

C Compiler Reference Manual
Data Definitions

bit e,f;
byte g[3][2];
char *h;
enum boolean {false, true};
boolean j;
byte k = 5;
byte const WEEKS = 52;
byte const FACTORS [4] =
 {8, 16, 64, 128};

struct data_record {
 byte a [2];
 byte b : 2; /*2 bits */
 byte c : 3; /*3 bits*/
 int d;
}

51

C Compiler Reference Manual
Function Definition

FUNCTION DEFINITION
Function Definition

The format of a function definition is as follows:
[qualifier] id () { [stmt] }
 ^
 |
Optional See Below

 ^
 |
Zero or more
comma separated.
See Data Types

 ^
 |
Zero or more semicolons
separated. See Statements

[type-specifier id]

The qualifiers for a function are as follows:

• VOID
• type-specifier
• #separate
• #inline
• #int_..

When one of the above are used and the function has a prototype (forward
declaration of the function before it is defined) you must include the qualifier on
both the prototype and function definition.

A (non-standard) feature has been added to the compiler to help get around the
problems created by the fact that pointers cannot be created to constant strings.
A function that has one CHAR parameter will accept a constant string where it is
called. The compiler will generate a loop that will call the function once for each
character in the string.

Example:

void lcd_putc(char c) {
...
}

lcd_putc ("Hi There.");

52

C Compiler Reference Manual
Function Definition

Reference Parameters

The compiler has limited support for reference parameters. This increases the
readability of code and the efficiency of some inline procedures. The following
two procedures are the same. The one with reference parameters will be
implemented with greater efficiency when it is inline.

funct_a(int*x,int*y){
 /*Traditional*/
 if(*x!=5)
 *y=*x+3;
}

funct_a(&a,&b);

funct_b(int&x,int&y){
 /*Reference params*/
 if(x!=5)
 y=x+3;
}

funct_b(a,b);

53

C Compiler Reference Manual
C Statements and Expressions

C STATEMENTS AND EXPRESSIONS
Program Syntax

A program is made up of the following four elements in a file. These are covered
in more detail in the following paragraphs.

• Comment
• Pre-Processor Directive
• Data Definition
• Function Definition

Comment

A comment may appear anywhere within a file except within a quoted string.
Characters between the /* and */ are ignored. Characters after a // up to the end
of a line are also ignored.

54

C Compiler Reference Manual
C Statements and Expressions

Statements
STATEMENT EXAMPLE
if (expr) stmt; [else stmt;] if (x==25)

 x=1;
else
 x=x+1;

while (expr) stmt; while (get_rtcc()!=0)
 putc(‘n’);

do stmt while (expr); do {
 putc(c=getc());
} while (c!=0);

for (expr1;expr2;expr3) stmt; for (i=1;i<=10;++i)
 printf(“%u\r\n”,i);

switch (expr) {
case cexpr: stmt; //one or more case
[default:stmt]
... }

switch (cmd) {
 case 0: printf(“cmd 0”);
 break;
 case 1: printf(“cmd 1”);
 break;
 default: printf(“bad cmd”);
 break; }

return [expr]; return (5);

goto label; goto loop;

label: stmt; loop: I++;

break; break;

continue; continue;

expr; i=1;

; ;

{[stmt]}
 ^
 |
Zero or more semicolon separated

{a=1;
 b=1;}

Note: Items in [] are optional

55

C Compiler Reference Manual
C Statements and Expressions

Expressions

Constants:
123 Decimal
0123 Octal
0x123 Hex
0b010010 Binary
'x' Character
'\010' Octal Character
'\xA5 Hex Character
'\c' Special Character. Where \c is one of:

 \n Line Feed- Same as \x0a
 \r Return Fee - Same as \x0d
 \t TAB- Same as \x09
 \b Backspace- Same as \x08
 \f Form Feed- Same as x0c
 \a Bell- Same as \x07
 \v Vertical Space- Same as \x0b
 \? Question Mark- Same as \x3f
 \’ Single Quote- Same as \x60
 \” Double Quote- Same as \x22
 \\ A Single Backslash- Same as \x5c

"abcdef" String (null is added to the end)

Identifiers:
ABCDE Up to 32 characters beginning with a non-numeric. Valid

characters are A-Z, 0-9 and _ (underscore).
ID[X] Single Subscript
ID[X][X] Multiple Subscripts
ID.ID Structure or union reference (First ID is a variable)
ID->ID Structure or union reference (First ID is a pointer to variable)

56

C Compiler Reference Manual
C Statements and Expressions

 Operators

+ Addition Operator
+= Addition assignment operator, x+=y, is the same as x=x+y
&= Bitwise and assignment operator, x&=y, is the same as x=x&y
& Address operator
& Bitwise and operator
^= Bitwise exclusive or assignment operator, x^=y, is the same as

x=x^y
^ Bitwise exclusive or operator
l= Bitwise inclusive or assignment operator, xl=y, is the same as x=xly
l Bitwise inclusive or operator
?: Conditional Expression operator
- - Decrement
/= Division assignment operator, x\=y, is the same as x=x/y
/ Division operator
== Equality
> Greater than operator
>= Greater than or equal to operator
++ Increment
* Indirection operator
!= Inequality
<<= Left shift assignment operator, x<<=y, is the same as x=x<<y
< Less than operator
<< Left Shift operator
<= Less than or equal to operator
&& Logical AND operator
! Logical negation operator
ll Logical OR operator
%= Modules assignment operator x%=y, is the same as x=x%y
% Modules operator
= Multiplication assignment operator, x=y, is the same as x=x*y
* Multiplication operator
~ One's complement operator
>>= Right shift assignment, x>>=y, is the same as x=x>>y
>> Right shift operator
-> Structure Pointer operation
-= Subtraction assignment operator
- Subtraction operator
sizeof Determines size in bytes of operand

57

C Compiler Reference Manual
C Statements and Expressions

Operator Precedence

In descending precedence
(expr)
!expr ~expr ++expr expr++ - -expr expr- -
(type)expr *expr &value sizeof(type)
expr*expr expr/expr expr%expr
expr+expr expr-expr
expr<<expr expr>>expr
expr<expr expr<=expr expr>expr expr>=expr
expr==expr expr!=expr
expr&expr
expr^expr
expr | expr
expr&& expr
expr || expr
!value ? expr: expr
value = expr value+=expr value-=expr
value*=expr value/=expr value%=expr
value>>=expr value<<=expr value&=expr
value^=expr value|=expr expr, expr

58

C Compiler Reference Manual
Built-In Functions

BUILT-IN FUNCTIONS
Built-In Function List By Category
RS232 I/O Parallel Slave I/O
getc() 72 setup_psp() 112
putc() 94 psp_input_full() 93
gets() 73 psp_output_full() 93
puts() 95 psp_overflow() 93
printf() 92 Delays
kbhit() 80 delay_us() 67
set_uart_speed() 106 delay_ms() 66
I2C I/O delay_cycles() 66
i2c_start() 75 Processor Controls
i2c_stop() 75 sleep() 120
i2C_read 74 reset_cpu() 99
i2c_write() 76 restart_cause() 99
i2c_poll() 73 disable_interrupts() 68
Discrete I/O enable_interrupts() 69
output_low() 89 ext_int_edge() 70
output_high() 89 read_bank() 96
output_float() 88 write_bank() 128
output_bit() 87 Bit/Byte Manipulation
input() 77 shift_right() 119
output_X() 90 shift_left() 118
input_X() 77 rotate_right() 102
port_b_pullups() 91 rotate_left() 101
set_tris_X() 105 bit_clear() 63
SPI two wire I/O bit_set() 63
setup_spi() 112 bit_test() 64
spi_read() 122 swap() 127
spi_write() 122 make8() 84
spi_data_is_in() 121 make16() 85
 make32() 85
 Capture/Compare/PWM
 setup_ccpX() 108
 set_pwmX_duty() 103

59

C Compiler Reference Manual
Built-In Functions

Built-In Function List By Category… Continued
Timers Standard C Char
setup_timer_X() 113 atoi() 62
set_timer_X() 104 atoi32() 62
get_timer_X() 71 atol() 62
setup_counters() 110 atof() 61
setup_wdt() 117 tolower() 128
restart_wdt() 100 toupper() 128
A/D Conversion isalnum() 79
setup_adc_ports() 107 isalpha() 79
setup_adc() 107 isamoung() 78
set_adc_channel() 107 isdigit() 79
read_adc() 95 islower() 79
Analog Compare isspace() 79
setup_comparator() 109 isupper() 79
Internal EEPROM isxdigit() 79
read_eeprom() 98 strlen() 124
write_eeprom() 129 strcpy() 126
read_program_eeprom() 98 strncpy() 124
write_program_eeprom() 130 strcmp() 124
read_calibration() 97 stricmp() 124
Standard C Math strncmp() 124
abs() 61 strcat() 124
acos() 61 strstr() 124
asin() 61 strchr() 124
atan() 61 strrchr() 124
ceil() 65 strtok() 124
cos() 66 strspn() 124
exp() 69 strcspn() 124
floor() 70 strpbrk() 124
labs() 81 strlwr() 124
log() 83 Standard C memory
log10() 83 memset() 87
pow() 91 memcpy() 86
sin() 120 Voltage Ref
sqrt() 123 setup_vref() 116
tan() 120

60

C Compiler Reference Manual
Built-In Functions

ABS()

Syntax: value = abs(x)

Parameters: x is a signed 8, 16, or 32 bit int or a float.

Returns: Same type as the parameter.

Function: Computes the absolute value of a number.

Availability: All devices

Requires: #include <stdlib.h>

Examples:

signed int target,actual;
 ...
error = abs(target-actual);

Example Files: None

Also See: labs()

ACOS()

See: SIN()

ASIN()

See: SIN()

ATAN()

See: SIN()

ATOF

Syntax: result = atof(string)

Parameters: string is a pointer to a null terminated string of characters.

Returns: result is a 32 bit floating point number.

61

C Compiler Reference Manual
Built-In Functions

Function: Converts the string passed to the function into a floating

point representation. If the result cannot be represented, the
behavior is undefined.

Availability: All devices

Requires: #include <stdlib.h>

Examples:

char string [10];
float x;

strcpy (string, “123.456”);
x = atof(string)
// x is now 123.456

Example Files: ex_tank.c

Also See: atoi(), atol(), atoi32(), printf()

ATOI()
ATOL()
ATOI32()

Syntax: ivalue = atoi(string)
 or
 lvalue = atol(string)
 or
 i32value = atoi32(string)

Parameters: string is a pointer to a null terminated string of characters.

Returns: ivalue is an 8 bit int.
 lvalue is a 16 bit int.
 i32 value is a 32 bit int.

Function: Converts the string pointed too by ptr to int representation.

Accepts both decimal and hexadecimal argument. If the
result cannot be represented, the behavior is undefined.

Availability: All devices.

Requires: #include <stdlib.h>

62

C Compiler Reference Manual
Built-In Functions

Examples:

char string[10];
int x;

strcpy(string,"123");
x = atoi(string);
// x is now 123

Example Files: input.c

Also See: printf()

BIT_CLEAR()

Syntax: bit_clear(var,bit)

Parameters: var may be a 8,16 or 32 bit variable (any lvalue) bit is a

number 0-31 representing a bit number, 0 is the least
significant bit.

Returns: undefined

Function: Simply clears the specified bit (0-7, 0-15 or 0-31) in the

given variable. The least significant bit is 0. This function is
the same as: var &= ~(1<<bit);

Availability: All devices

Requires: None

Examples:

int x;
x=5;
bit_clear(x,2);
// x is now 1

bit_clear(*11,7); // A crude way to disable ints

Example Files: ex_patg.c

Also See: bit_set(), bit_test()

BIT_SET()

63

C Compiler Reference Manual
Built-In Functions

Syntax: bit_set(var,bit)

Parameters: var may be a 8,16 or 32 bit variable (any lvalue) bit is a

number 0-31 representing a bit number, 0 is the least
significant bit.

Returns: undefined

Function: Sets the specified bit (0-7, 0-15 or 0-31) in the given

variable. The least significant bit is 0. This function is the
same as: var |= (1<<bit);

Availability: All devices

Requires: Nothing

Examples:

int x;
x=5;
bit_set(x,3);
// x is now 13

bit_set(*6,1); // A crude way to set pin B1 high

Example Files: ex_patg.c

Also See: bit_clear(), bit_test()

BIT_TEST()

Syntax: value = bit_test (var,bit)

Parameters: var may be a 8,16 or 32 bit variable (any lvalue) bit is a

number 0-31 representing a bit number, 0 is the least
significant bit.

Returns: 0 or 1

Function: Tests the specified bit (0-7,0-15 or 0-31) in the given

variable. The least significant bit is 0. This function is
much more efficient than, but otherwise the same as: ((var &
(1<<bit)) != 0)

64

C Compiler Reference Manual
Built-In Functions

Availability: All devices

Requires: Nothing

Examples:

if(bit_test(x,3) || !bit_test (x,1)){
//either bit 3 is 1 or bit 1 is 0
}

if(data!=0)
 for(i=31;!bit_test(data,i);i--) ;
// i now has the most significant bit in data
// that is set to a 1

Example Files: ex_patg.c

Also See: bit_clear(), bit_set()

CEIL()

Syntax: result = ceil (value)

Parameters: value is a float

Returns: A float

Function: Computes the smallest integral value greater than the

argument. Float(12.67) is 13.00.

Availability: All devices

Requires: #include <math.h>

Examples:

// Calculate cost based on weight rounded
// up to the next pound

cost = ceil(weight) * DollarsPerPound;

Example Files: None

Also See: floor()

65

C Compiler Reference Manual
Built-In Functions

COS()

See: SIN()

DELAY_CYCLES()

Syntax: delay_cycles (count)

Parameters: count - a constant or variable 1-255

Returns: undefined

Function: Creates code to perform a delay of the specified number of

instruction clocks (1-255). An instruction clock is equal to
four oscillator clocks.

Availability: All devices

Requires: Nothing

Examples:

delay_cycles(1); // Same as a NOP

delay_cycles(25); // At 20 mhz a 5us delay

Example Files: ex_cust.c

Also See: delay_us(), delay_ms()

DELAY_MS()

Syntax: delay_ms (time)

Parameters: time - a variable 0-255 or a constant 0-65535

Returns: undefined

Function: This function will create code to perform a delay of the

specified length. Time is specified in milliseconds. This
function works by executing a precise number of instructions
to cause the requested delay. It does not use any timers. If
interrupts are enabled the time spent in an interrupt routine
is not counted toward the time.

66

C Compiler Reference Manual
Built-In Functions

Availability: All devices

Requires: #use delay

Examples:

#use delay (clock=20000000)

delay_ms(2);

void delay_seconds(int n) {
 for (;n!=0; n- -)
 delay_ms(1000);
}

Example Files: ex_sqw.c

Also See: delay_us(), delay_cycles(), #use delay

DELAY_US()

Syntax: delay_us (time)

Parameters: time - a variable 0-255 or a constant 0-65535

Returns: undefined

Function: Creates code to perform a delay of the specified length.

Time is specified in microseconds. Shorter delays will be
INLINE code and longer delays and variable delays are calls
to a function. This function works by executing a precise
number of instructions to cause the requested delay. It does
not use any timers. If interrupts are enabled the time spent
in an interrupt routine is not counted toward the time.

Availability: All devices

Requires: #use delay

Examples:

#use delay(clock=20000000)

do {
output_high(PIN_B0);

67

C Compiler Reference Manual
Built-In Functions

delay_us(duty);
output_low(PIN_B0);
delay_us(period-duty);
} while(TRUE);

Example Files: ex_sqw.c

Also See: delay_ms(), delay_cycles(), #use delay

DISABLE_INTERRUPTS()

Syntax: disable_interrupts (level)

Parameters: level - a constant defined in the devices .h file

Returns: undefined

Function: Disables the interrupt at the given level. The GLOBAL level

will not disable any of the specific interrupts but will prevent
any of the specific interrupts, previously enabled to be
active. Valid specific levels are the same as are used in
#INT_xxx and are listed in the devices .h file. GLOBAL will
also disable the peripheral interrupts on devices that have it.
Note that it is not necessary to disable interrupts inside an
interrupt service routine since interrupts are automatically
disabled.

Availability: Device with interrupts (PCM and PCH)

Requires: Should have a #INT_xxxx, Constants are defined in the

devices .h file.

Examples:

disable_interrupts(GLOBAL); // all interrupts OFF
disable_interrupts(INT_RDA); // RS232 OFF

enable_interrupts(ADC_DONE);
enable_interrupts(RB_CHANGE);
 // these enable the interrupts
 // but since the GLOBAL is disabled they are not
 // activated until the following statement:
enable_interrupts(GLOBAL);

Example Files: ex_sisr.c, ex_stwt.c

68

C Compiler Reference Manual
Built-In Functions

Also See: enable_interrupts(), #int_xxxx

ENABLE_INTERRUPTS()

Syntax: enable_interrupts (level)

Parameters: level - a constant defined in the devices .h file

Returns: undefined

Function: Enables the interrupt at the given level. An interrupt

procedure should have been defined for the indicated
interrupt. The GLOBAL level will not enable any of the
specific interrupts but will allow any of the specific interrupts
previously enabled to become active.

Availability: Device with interrupts (PCM and PCH)

Requires: Should have a #INT_xxxx, Constants are defined in the

devices .h file.

Examples:

enable_interrupts(GLOBAL);
enable_interrupts(INT_TIMER0);
enable_interrupts(INT_TIMER1);

Example Files: ex_sisr.c, ex_stwt.c

Also See: disable_interrupts(), #int_xxxx

EXP()

Syntax: result = exp (value)

Parameters: value is a float

Returns: A float

Function: Computes the exponential function of the argument. This is

e to the power of fvalue where e is the base of natural
logarithms. exp(1) is 2.7182818.

Availability: All devices.

69

C Compiler Reference Manual
Built-In Functions

Requires: MATH.H must be included.

Examples:

// Calculate x to the power of y

x_power_y = exp(y * log(x));

Example Files: None

Also See: pow(), log(), log10()

EXT_INT_EDGE()

Syntax: ext_int_edge (source, edge)

Parameters: source is a constant 0,1 or 2 for the PIC18 and 0 otherwise

source is optional and defaults to 0 edge is a constant
H_TO_L or L_TO_H representing "high to low" and "low to
high"

Returns: undefined

Function: Determines when the external interrupt is acted upon. The

edge may be L_TO_H or H_TO_L to specify the rising or
falling edge.

Availability: Only devices with interrupts (PCM and PCH)

Requires: Constants are in the devices .h file

Examples:

ext_int_edge(2, L_TO_H); // Set up PIC18 EXT2

ext_int_edge(H_TO_L); // Sets up EXT

Example Files: ex_wakup.c

Also See: #int_ext, enable_interrupts(), disable_interrupts()

FLOOR()

Syntax: result = floor (value)

70

C Compiler Reference Manual
Built-In Functions

Parameters: value is a float

Returns: A float

Function: Computes the greatest integral value not greater than the

argument. Floor(12.67) is 12.00.

Availability: All devices

Requires: MATH.H must be included.

Examples:

// Find the fractional part of a value

frac = value - floor(value);

Example Files: None

Also See: ceil()

GET_TIMERx()

Syntax: value=get_timer0() Same as: value=get_rtcc()
 value=get_timer1()
 value=get_timer2()
 value=get_timer3()

Parameters: None

Returns: Timers 1 and 3 return a 16 bit int.
 Timer 2 returns a 8 bit int.
 Timer 0 (AKA RTCC) returns a 8 bit int except on the PIC18

where it returns a 16 bit int.

Function: Returns the count value of a real time clock/counter. RTCC

and Timer0 are the same. All timers count up. When a
timer reaches the maximum value it will flip over to 0 and
continue counting (254, 255, 0, 1, 2...).

Availability: Timer 0 - All devices
 Timers 1,2 - Most but not all PCM devices
 Timer 3 - Only PIC18

71

C Compiler Reference Manual
Built-In Functions

Requires: Nothing

Examples:

set_timer0(0);
while (get_timer0() < 200) ;

Example Files: ex_stwt.c

Also See: set_timerx(), setup_timerx()

GETC()
GETCH()
GETCHAR()

Syntax: value = getc()

Parameters: None

Returns: A 8 bit character

Function: This function waits for a character to come in over the

RS232 RCV pin and returns the character. If you do not
want to hang forever waiting for an incoming character use
kbhit() to test for a character available. If a built-in USART is
used the hardware can buffer 3 characters otherwise GETC
must be active while the character is being received by the
PIC.

Availability: All devices

Requires: #use rs232

Examples:

printf("Continue (Y,N)?");
do {
answer=getch();
}while(answer!='Y' && answer!='N');

Example Files: ex_stwt.c

Also See: putc(), kbhit(), printf(), #use rs232, input.c

72

C Compiler Reference Manual
Built-In Functions

GETS()

Syntax: gets (string)

Parameters: string is a pointer to a array of characters.

Returns: undefined

Function: Reads characters (using GETC()) into the string until a

RETURN (value 13) is encountered. The string is
terminated with a 0. Note that INPUT.C has a more versatile
GET_STRING function.

Availability: All devices

Requires: #use rs232

Examples:

char string[30];

printf("Password: ");
gets(string);
if(strcmp(string,password))
 printf("OK");

Example Files: None

Also See: getc(), get_string in input.c

I2C_POLL()

Syntax: i2c_poll()

Parameters: None

Returns: 1 (TRUE) or 0 (FALSE)

Function: The I2C_POLL() function should only be used when the

built-in SSP is used. This function returns TRUE if the
hardware has a received byte in the buffer. When a TRUE is
returned, a call to I2C_READ() will immediately return the
byte that was received.

Availability: Devices with built in I2C

73

C Compiler Reference Manual
Built-In Functions

Requires: #use i2c

Examples:

i2c_start(); // Start condition
i2c_write(0xc1); // Device address/Read
count=0;
while(count!=4) {
while(!i2c_poll()) ;
buffer[count++]= i2c_read(); //Read Next
}
i2c_stop(); // Stop condition

Example Files: ex_slave.c

Also See: i2c_start, i2c_write, i2c_stop, i2c_poll

I2C_READ()

Syntax: data = i2c_read();
 or
 data = i2c_read(ack);

Parameters: ack -Optional, defaults to 1.
 0 indicates do not ack.

Returns: data - 8 bit int

Examples:

data1 = i2c_read();

 1 indicates to ack.

Function: Reads a byte over the I2C interface. In master mode this

function will generate the clock and in slave mode it will wait
for the clock. There is no timeout for the slave, use
I2C_POLL to prevent a lockup. Use RESTART_WDT in the
#USE I2C to strobe the watch-dog timer in the slave mode
while waiting.

Requires: A #use i2c

i2c_start();
i2c_write(0xa1);

data2 = i2c_read();
i2c_stop();

74

C Compiler Reference Manual
Built-In Functions

Example Files: ex_extee.c with 2416.C

See Also: i2c_start, i2c_write, i2c_stop, i2c_poll

Parameters: None

Availability: All devices.

i2c_write(0xa0); // Device address

i2c_write(0xa1); // To change data direction

Also See: i2c_stop, i2c_write, i2c_read, i2c_poll, #use i2c

Parameters: None

I2C_START()

Syntax: i2c_start()

Returns: undefined

Function: Issues a start condition when in the I2C master mode. After
the start condition the clock is held low until I2C_WRITE() is
called. If another I2C_start is called in the same function
before an i2c_stop is called then a special restart condition is
issued. Note that specific I2C protocol depends on the slave
device.

Requires: #use i2c

Examples:
i2c_start();

i2c_write(address); // Data to device
i2c_start(); // Restart

data=i2c_read(0); // Now read from slave
i2c_stop();

Example Files: ex_extee.c with 2416.c

I2C_STOP()

Syntax: i2c_stop()

Returns: undefined

75

C Compiler Reference Manual
Built-In Functions

Function: Issues a stop condition when in the I2C is in master mode.

Availability: All devices

i2c_write(0xa0); // Device address

i2c_stop(); // Stop condition

I2C_WRITE()

Returns: This function returns the ACK Bit.

Function: Sends a single byte over the I2C interface. In master
mode this function will generate a clock with the data and in
slave mode it will wait for the clock from the master. No
automatic timeout is provided in this function. This function
returns the ACK bit. The LSB of the first write after a start
determines the direction of data transfer (0 is master to
slave). Note that specific I2C protocol depends on the slave
device.

Examples:

i2c_start(); // Start condition

Requires: #use i2c

Examples:
i2c_start(); // Start condition

i2c_write(5); // Device command
i2c_write(12); // Device data

Example Files: ex_extee.c with 2416.c

Also See: i2c_start, i2c_write, i2c_read, i2c_poll, #use i2c

Syntax: i2c_write (data)

Parameters: data is an 8 bit int

 0 means ACK, 1 means NO ACK.

Availability: All devices

Requires: #use i2c

long cmd;
 ...

i2c_write(0xa0); // Device address
i2c_write(cmd); // Low byte of command

76

C Compiler Reference Manual
Built-In Functions

i2c_write(cmd>>8); // High byte of command
i2c_stop(); // Stop condition

Example Files: ex_extee.c with 2416.c

Also See: i2c_start(), i2c_stop, i2c_read, i2c_poll, #use i2c

INPUT()

Syntax: value = input (pin)

Parameters: Pin to read. Pins are defined in the devices .h file. The

actual value is a bit address. For example, port a (byte 5) bit
3 would have a value of 5*8+3 or 43. This is defined as
follows: #define PIN_A3 43

Returns: 0 (or FALSE) if the pin is low,
 1 (or TRUE) if the pin is high

Function: This function returns the state of the indicated pin. The

method of I/O is dependent on the last USE *_IO directive.
By default with standard I/O before the input is done the data
direction is set to input.

Availability: All devices

Requires: Pin constants are defined in the devices .h file

Examples:

while (!input(PIN_B1)); // waits for B1 to go high

if(input(PIN_A0))
 printf("A0 is now high\r\n");

Example Files: ex_pulse.c

Also See: input_x(), output_low(), output_high(), #use xxxx_io

INPUT_x()

Syntax: value = input_a()
 value = input_b()
 value = input_c()
 value = input_d()

77

C Compiler Reference Manual
Built-In Functions

 value = input_e()

Parameters: None

Returns: An 8 bit int representing the port input data.

Function: Inputs an entire byte from a port. The direction register is

changed in accordance with the last specified #USE *_IO
directive. By default with standard I/O before the input is
done the data direction is set to input.

Availability: All devices

Requires: Nothing

Examples:

data = input_b();

Example Files: ex_psp.c

Also See: input(), output_x(), #use xxxx_io

ISAMOUNG()

Syntax: result = isamoung (value, cstring)

Parameters: value is a character
 cstring is a constant string

Returns: 0 (or FALSE) if value is not in cstring
 1 (or TRUE) if value is in cstring

Function: Returns TRUE if a character is one of the characters in a

constant string.

Availability: All devices

Requires: Nothing

Examples:

char x;
...
if(isamoung(x,
 "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"))

78

C Compiler Reference Manual
Built-In Functions

 printf("The character is valid");

Example Files: ctype.h

Also See: isalnum(), isalpha(), isdigit(), isspace(), islower(), isupper(),

isxdigit()

ISALNUM(char)
ISALPHA(char)
ISDIGIT(char)
ISLOWER(char)
ISSPACE(char)
ISUPPER(char)
ISXDIGIT(char)

Syntax: value = isalnum(datac)
 value = isalpha(datac)
 value = isdigit(datac)
 value = islower(datac)
 value = isspace(datac)
 value = isupper(datac)
 value = isxdigit(datac)

Parameters: datac is a 8 bit character

Returns: 0 (or FALSE) if datac dose not match the criteria, 1 (or

TRUE) if datac does match the criteria.

Function: Tests a character to see if it meets specific criteria as

follows:
 isalnum(x) X is 0..9, 'A'..'Z', or 'a'..'z'
 isalpha(x) X is 'A'..'Z' or 'a'..'z'
 isdigit(x) X is '0'..'9'
 islower(x) X is 'a'..'z'

 isupper(x) X is 'A'..'Z
 isspace(x) X is a space
 isxdigit(x) X is '0'..'9', 'A'..'F', or 'a'..'f'

Availability: All devices

Requires: ctype.h

79

C Compiler Reference Manual
Built-In Functions

Examples:

char id[20];
 ...
if(isalpha(id[0])) {
 valid_id=TRUE;
 for(i=1;i<strlen(id);i++)
 valid_id=valid_id&& isalnum(id[i]);
} else
 valid_id=FALSE;

Example Files: ex_str.c

Also See: isamoung()

KBHIT()

Syntax: value = kbhit()

Parameters: None

Returns: 0 (or FALSE) if getc() will need to wait for a character to

come in, 1 (or TRUE) if a character is ready for getc()

Function: If the RS232 is under software control this function returns

TRUE if the start bit of a character is being sent on the
RS232 RCV pin. If the RS232 is hardware this function
returns TRUE is a character has been received and is
waiting in the hardware buffer for getc() to read. This
function may be used to poll for data without stopping and
waiting for the data to appear. Note that in the case of
software RS232 this function should be called at least 10
times the bit rate to ensure incoming data is not lost.

Availability: All devices

Requires: #use rs232

Examples:

char timed_getc() {

 long timeout;

 timeout_error=FALSE;
 timeout=0;

80

C Compiler Reference Manual
Built-In Functions

 while(!kbhit&&(++timeout<50000)) // 1/2 second
 delay_us(10);
 if(kbhit())
 return(getc());
 else {
 timeout_error=TRUE;
 return(0);
 }
}

Example Files: ex_tgetc.c

Also See: getc(), #use rs232

LABS()

Syntax: result = labs (value)

Parameters: value is a 16 bit signed long int

Returns: A 16 bit signed long int

Function: Computes the absolute value of a long integer.

Availability: All devices.

Requires: STDLIB.H must be included.

Examples:

if(labs(target_value - actual_value) > 500)
 printf("Error is over 500 points\r\n");

Example Files: None

Also See: abs()

LCD_LOAD()

Syntax: lcd_load (buffer_pointer, offset, length);

Parameters: buffer_pointer points to the user data to send to the LCD,

offset is the offset into the LCD segment memory to write
the data, length is the number of bytes to transfer.

81

C Compiler Reference Manual
Built-In Functions

Returns: undefined

Function: Will load length bytes from buffer_pointer into the 923/924

LCD segment data area beginning at offset (0-15).
lcd_symbol provides an easier way to write data to the
segment memory.

Availability: This function is only available on devices with LCD drive

hardware.

Requires: Constants are defined in the devices .h file.

Examples:

lcd_load(buffer, 0, 16);

Example Files: ex_92lcd.c

Also See: lcd_symbol(), setup_lcd()

LCD_SYMBOL()

Syntax: lcd_symbol (symbol, b7_addr, b6_addr, b5_addr,

b4_addr, b3_addr, b2_addr, b1_addr, b0_addr);

Parameters: symbol is a 8 bit constant.
 bX_addr is a bit address representing the segment location

to be used for bit X of symbol.

Returns: undefined

Function: Loads 8 bits into the segment data area for the LCD with

each bit address specified. If bit 7 in symbol is set the
segment at B7_addr is set, otherwise it is cleared. The
same is true of all other bits in symbol. The B7_addr is a bit
address into the LCD RAM.

Availability: This function is only available on devices with LCD drive

hardware.

Requires: Constants are defined in the devices .h file.

Examples:

byte CONST DIGIT_MAP[10]=

82

C Compiler Reference Manual
Built-In Functions

{0X90,0XB7,0X19,0X36,0X54,0X50,0XB5,0X24};

#define DIGIT_1_CONFIG
COM0+2,COM0+4,COM05,COM2+4,COM2+1,
COM1+4,COM1+5

for(i=1; i<=9; ++i) {
LCD_SYMBOL(DIGIT_MAP[i],DIGIT_1_CONFIG);
delay_ms(1000);
}

Example Files: ex_92lcd.c

Also See: setup_lcd(), lcd_load()

LOG()

Syntax: result = log (value)

Parameters: value is a float

Returns: A float

Function: Computes the natural logarithm of the float x. If the

argument is less than or equal to zero or too large, the
behavior is undefined.

Availability: All devices

Requires: MATH.H must be included.

Examples:

lnx = log(x);

Example Files: None

Also See: log10(), exp(), pow()

LOG10()

Syntax: result = log10 (value)

Parameters: value is a float

83

C Compiler Reference Manual
Built-In Functions

Returns: A float

Function: Computes the base-ten logarithm of the float x. If the

argument is less than or equal to zero or too large, the
behavior is undefined.

Availability: Al devices

Requires: #include <math.h>

Examples:

db = log10(read_adc()*(5.0/255))*10;

Example Files: None

Also See: log(), exp(), pow()

MAKE8()

Syntax: i8 = MAKE8(var,offset)

Parameters: var is a 16 or 32 bit integer.
 offset is a byte offset of 0,1,2 or 3.

Returns: An 8 bit integer

Function: Extracts the byte at offset from var. Same as: i8 = (((var >>

(offset*8)) & 0xff) except it is done with a single byte move.

Availability: All devices

Requires: Nothing

Examples:

int32 x;
int y;

y = make8(x,3); // Gets MSB of x

Example Files: none

Also see: make16(), make32()

84

C Compiler Reference Manual
Built-In Functions

MAKE16()

Syntax: i16 = MAKE16(varhigh,varlow)

Parameters: varhigh and varlow are 8 bit integers.

Returns: A 16 bit integer

Function: Makes a 16 bit number out of two 8 bit numbers. If either

parameter is 16 or 32 bits only the lsb is used. Same as: i16
= (int16)(varhigh&0xff)*0x100+(varlow&0xff) except it is done
with two byte moves.

Availability: All devices

Requires: Nothing

Examples:

long x;
int hi,lo;

x = make16(hi,lo);

Example Files: ltc1298.c

Also see: make8(), make32()

MAKE32()

Syntax: i32 = MAKE32(var1,var2,var3,var4)

Parameters: var1-4 are a 8 or 16 bit integers. var2-4 are optional.

Returns: A 32 bit integer

Function: Makes a 32 bit number out of any combination of 8 and 16

bit numbers. Note that the number of parameters may be 1
to 4. The msb is first. If the total bits provided is less than
32 then zeros are added at the msb.

Availability: All devices

Requires: Nothing

85

C Compiler Reference Manual
Built-In Functions

Examples:

int32 x;
int y;
long z;

x = make32(1,2,3,4); // x is 0x01020304

y=0x12;
z=0x4321;

x = make32(y,z); // x is 0x00124321

x = make32(y,y,z); // x is 0x12124321

Example Files: ex_freqc.c

Also see: make8(), make16()

MEMCPY()

Syntax: memcpy (destination, source, n)

Parameters: destination is a pointer to the destination memory, source

is a pointer to the source memory, n is the number of bytes
to transfer

Returns: undefined

Function: Copies n bytes from source to destination in RAM. Be aware

that array names are pointers where other variable names
and structure names are not (and therefore need a & before
them).

Availability: All devices.

Requires: Nothing

Examples:

memcpy(&structA,&structB,sizeof (structA));
memcpy(arrayA,arrayB,sizeof (arrayA));
memcpy(&structA, &databyte, 1);

Example Files: None

Also See: strcpy(), memset()

86

C Compiler Reference Manual
Built-In Functions

MEMSET()

Syntax: memset (destination, value, n)

Parameters: destination is a pointer to memory, value is a 8 bit int, n is a

8 bit int.

Returns: undefined

Function: Sets n bytes of memory at destination with the value. Be

aware that array names are pointers where other variable
names and structure names are not (and therefore need a &
before them).

Availability: All devices

Requires: Nothing

Examples:

memset(arrayA, 0, sizeof(arrayA));
memset(arrayB, '?', sizeof(arrayB));
memset(&structA, 0xFF, sizeof (structA));

Example Files: None

Also See: memcpy()

OUTPUT_BIT()

Syntax: output_bit (pin, value)

Parameters: Pins are defined in the devices .h file. The actual number is

a bit address. For example, port a (byte 5) bit 3 would have
a value of 5*8+3 or 43. This is defined as follows: #define
PIN_A3 43. Value is a 1 or a 0.

Returns: undefined

Function: Outputs the specified value (0 or 1) to the specified I/O pin.

The method of setting the direction register is
determined by the last #USE *_IO directive.

87

C Compiler Reference Manual
Built-In Functions

Availability: All devices

Requires: Pin constants are defined in the devices .h file

Examples:

output_bit(PIN_B0, 0);
// Same as output_low(pin_B0);

output_bit(PIN_B0,input(PIN_B1));
// Make pin B0 the same as B1

output_bit(PIN_B0,
 shift_left(&data,1,input(PIN_B1)));
// Output the MSB of data to
// B0 and at the same time
// shift B1 into the LSB of data

Example Files: ex_extee.c with 9356.c

Also See: input(), output_low(), output_high(), output_float(),

output_x(), #use xxxx_io

OUTPUT_FLOAT()

Syntax: output_float (pin)

Parameters: Pins are defined in the devices .h file. The actual value is a

bit address. For example, port a (byte 5) bit 3 would have a
value of 5*8+3 or 43. This is defined as follows: #define
PIN_A3 43

Returns: undefined

Function: Sets the specified pin to the input mode. This will allow the

pin to float high to represent a high on an open collector type
of connection.

Availability: All devices

Examples:

if((data & 0x80)==0)
 output_low(pin_A0);

Requires: Pin constants are defined in the devices .h file

88

C Compiler Reference Manual
Built-In Functions

else
 output_float(pin_A0);

Example Files: None

Also See: input(), output_low(), output_high(), output_bit(), output_x(),

#use xxxx_io

OUTPUT_HIGH()

Syntax: output_high (pin)

Parameters: Pin to read. Pins are defined in the devices .h file. The

actual value is a bit address. For example, port a (byte 5) bit
3 would have a value of 5*8+3 or 43. This is defined as
follows: #define PIN_A3 43

Returns: undefined

Function: Sets a given pin to the high state. The method of I/O used is

dependent on the last USE *_IO directive.

Availability: All devices

Requires: Pin constants are defined in the devices .h file

Examples:
output_high(PIN_A0);

Example Files: ex_sqw.c

OUTPUT_LOW()

Syntax: output_low (pin)

Also See: input(), output_low(), output_float(), output_bit(), output_x(),
#use xxxx_io

Parameters: Pins are defined in the devices .h file. The actual value is a
bit address. For example, port a (byte 5) bit 3 would have a
value of 5*8+3 or 43. This is defined as follows: #define
PIN_A3 43

89

C Compiler Reference Manual
Built-In Functions

Returns: undefined

Function: Sets a given pin to the ground state. The method of I/O

used is dependent on the last USE *_IO directive.

Requires: Pin constants are defined in the devices .h file

Examples:

output_low(PIN_A0);

Example Files: ex_sqw.c

Also See: input(), output_high(), output_float(), output_bit(), output_x(),
#use xxxx_io

OUTPUT_A()

OUTPUT_C()
OUTPUT_D()
OUTPUT_E()

Syntax: output_a (value)

 output_c (value)
 output_d (value)
 output_e (value)

Parameters: value is an 8 bit int

Availability: All devices

OUTPUT_B()

 output_b (value)

Returns: undefined

Function: Output an entire byte to a port. The direction register is

changed in accordance with the last specified #USE *_IO
directive.

Availability: All devices, however not all devices have all ports (A-E).

Requires: Nothing

Examples:

90

C Compiler Reference Manual
Built-In Functions

OUTPUT_B(0xf0);

Example Files: ex_patg.c

Also See: input(), output_low(), output_high(), output_float(),

output_bit(), #use xxxx_io

PORT_B_PULLUPS()

Syntax: port_b_pull-ups (value)

Parameters: value is TRUE or FALSE

Returns: undefined

Function: Sets the port B input pullups. TRUE will activate, and a

FALSE will deactivate.

Availability: Only 14 and 16 bit devices (PCM and PCH). (Note: use

SETUP_COUNTERS on PCB parts).

Requires: Nothing

Examples:

port_b_pullups(FALSE);

Example Files: ex_lcdkb.c with kbd.c

Also See: input(), input_x(), output_float()

POW()

Syntax: f = pow (x,y)

Parameters: x and y and of type float

Returns: A float

Function: Calculates X to the Y power.

Availability: All Devices

Requires: #include <math.h>

91

C Compiler Reference Manual
Built-In Functions

Examples:

area = (size,3.0);

Example files: None

Also See: Nothing

PRINTF()

Syntax: printf (string)
 or
 printf (cstring, values...)
 or
 printf (fname, cstring, values...)

Parameters: String is a constant string or an array of characters null

terminated. Values is a list of variables separated by
commas, fname is a function name to be used for outputting
(default is putc is none is specified).

Returns: undefined

Function: Outputs a string of characters to either the standard RS-232

pins (first two forms) or to a specified function. Formatting is
in accordance with the string argument. When variables are
used this string must be a constant. The % character is
used within the string to indicate a variable value is to be
formatted and output. Longs in the printf may be 16 or 32
bit. A %% will output a single %. Formatting rules for the %
follows.

Format: The format takes the generic form %wt where w is optional

and may be 1-9 to specify how many characters are to be
outputted, or 01-09 to indicate leading zeros or 1.1 to 9.9 for
floating point. t is the type and may be one of the following:
• C Character
• S String or character
• U Unsigned int
• x hex int (lower case output)
• X Hex int (upper case output)
• D Signed int
• e Float in exp format

92

C Compiler Reference Manual
Built-In Functions

• f Float
• Lx Hex long int (lower case)
• LX Hex long int (upper case)
• Iu unsigned decimal long
• Id signed decimal long
• % Just a %

 Example formats:
 Specifer Value=0x12 Value=0xfe
 %03u 018 254
 %u 18 254
 %2u 18 *
 %5 18 254
 %d 18 -2
 %x 12 Fe
 %X 12 FE
 %4X 0012 00FE
 * Result is undefined - Assume garbage.

Availability: All devices

Requires: #use rs232 (unless fname is used)

Examples:

byte x,y,z;
printf("HiThere");
printf("RTCCValue=>%2x\n\r",get_rtcc());
printf("%2u %X %4X\n\r",x,y,z);
printf(LCD_PUTC, "n=%u",n);

Example Files: ex_admm.c, ex_lcdkb.c

Also See: atoi(), puts(), putc()

PSP_OUTPUT_FULL()
PSP_INPUT_FULL()
PSP_OVERFLOW()

Syntax: result = psp_output_full()
 result = psp_input_full()
 result = psp_overflow()

Parameters: None

93

C Compiler Reference Manual
Built-In Functions

Returns: A 0 (FALSE) or 1 (TRUE)

Function: These functions check the Parallel Slave Port (PSP) for the

indicated conditions and return TRUE or FALSE.

Availability: This function is only available on devices with PSP hardware

on chips.

Requires: Nothing

Examples:

while (psp_output_full()) ;
psp_data = command;
while(!psp_input_full()) ;
if (psp_overflow())
 error = TRUE;
else
 data = psp_data;

Example Files: ex_psp.c

Also See: setup_psp()

PUTC()
PUTCHAR()

Syntax: putc (cdata)
 putchar (cdata)

Parameters: cdata is a 8 bit character

Returns: undefined

Function: This function sends a character over the RS232 XMIT pin. A

#USE RS232 must appear before this call to determine the
baud rate and pin used. The #USE RS232 remains in effect
until another is encountered in the file.

Availability: All devices

Requires: #use rs232

Examples:

94

C Compiler Reference Manual
Built-In Functions

putc('*');
for(i=0; i<10; i++)
 putc(buffer[i]);
putc(13);

Example Files: ex_tgetc.c

Also See: getc(), printf(), #use rs232

PUTS()

Syntax: puts (string)

Returns: undefined

Function: Sends each character in the string out the RS232 pin using
PUTC(). After the string is sent a RETURN (13) and LINE-
FEED (10) are sent.

 In general printf() is more useful than puts().

Availability: All devices

Examples:

puts(" | HI | ");
puts(" ----------- ");

Example Files: None

READ_ADC()

Syntax: value = read_adc()

Returns: Either a 8 or 16 bit int depending on #DEVICE ADC=

directive.

Parameters: string is a constant string or a character array (null-

terminated)

Requires: #use rs232

puts(" ----------- ");

Also See: printf(), gets()

Parameters: None

95

C Compiler Reference Manual
Built-In Functions

Function: This function will read the digital value from the analog to

digital converter. Calls to setup_adc(), setup_adc_ports()
and set_adc_channel() should be made sometime before
this function is called. The range of the return value
depends on number of bits in the chips A/D converter and
the setting in the #DEVICE ADC= directive as follows:
#DEVCE 8 bit 10 bit 11 bit 16 bit
ADC=8 00-FF 00-FF 00-FF 00-FF
ADC=10 x 0-3FF x x
ADC=11 x x 0-7FF x
ADC=16 0-FF00 0-FFC0 0-FFE0 0-FFFF

Note: x- not defined

Availability: This function is only available on devices with A/D hardware.

Requires: Nothing

Examples:

setup_adc(ADC_CLOCK_INTERNAL);
setup_adc_ports(ALL_ANALOG);
set_adc_channel(1);
while (input(PIN_B0)) {
 delay_ms(5000);
 value = read_adc();
 printf("A/D value = %2x\n\r", value);
}

Example Files: ex_admm.c, ex_14kad.c

Also See: setup_adc(), set_adc_channel(), setup_adc_ports(), #device

READ_BANK()

Syntax: value = read_bank (bank, offset)

Parameters: bank is the physical RAM bank 1-3 (depending on the

device), offset is the offset into user RAM for that bank
(starts at 0),

Returns: 8 bit int

Function: Read a data byte from the user RAM area of the specified

memory bank. This function may be used on some devices

96

C Compiler Reference Manual
Built-In Functions

where full RAM access by auto variables is not efficient.
For example on the PIC16C57 chip setting the pointer size
to 5 bits will generate the most efficient ROM code however
auto variables can not be above 1Fh. Instead of going to 8
bit pointers you can save ROM by using this function to write
to the hard to reach banks. In this case the bank may be 1-3
and the offset may be 0-15.

Availability: All devices but only useful on PCB parts with memory over

1Fh and PCM parts with memory over FFh.

Requires: Nothing

Examples:

// See write_bank example to see how we got the data
// Moves data from buffer to LCD
i=0;
do {
 c=read_bank(1,i++);
 if(c!=0x13)
 lcd_putc(c);
} while (c!=0x13);

Example Files: ex_psp.c

Also See: write_bank(), and the "Common Questions and Answers"

section for more information.

READ_CALIBRATION()

Syntax: value = read_calibration (n)

Parameters: n is an offset into calibration memory beginning at 0

Returns: An 8 bit byte

Function: The read_calibration function reads location "n" of the

14000-calibration memory.

Availability: This function is only available on the PIC14000.

Requires: Nothing

Examples:

97

C Compiler Reference Manual
Built-In Functions

fin = read_calibration(16);

Example Files: ex_14kad.c with 14kcal.c

Also See: Nothing

READ_EEPROM()

Syntax: value = read_eeprom (address)

Parameters: address is an 8 bit int

Returns: An 8 bit int

Function: Reads a byte from the specified data EEPROM address.

The address begins at 0 and the range depends on the part.

Availability: This command is only for parts with built-in EEPROMS.

Requires: Nothing

Examples:

#define LAST_VOLUME 10
volume = read_EEPROM (LAST_VOLUME);

Example Files: ex_intee.c

Also See: write_eeprom()

READ_PROGRAM_EEPROM ()

Syntax: value = read_program_eeprom (address)

Parameters: address is 16 bits on PCM parts and 32 bits on PCH parts,

Returns: 16 bits on PCM parts and 8 bits on PCH parts.

Function: Reads data from the program memory.

Availability: Only devices that allow reads from program memory.

Requires: Nothing

98

C Compiler Reference Manual
Built-In Functions

Examples:

checksum = 0;
for(i=0;i<8196;i++)
 checksum^=read_program_eeprom(i);
printf("Checksum is %2X\r\n",checksum);

Example Files: None

Also See: write_program_eeprom(), write_eeprom(), read_eeprom()

RESET_CPU()

Syntax: reset_cpu()

Parameters: None

Returns: This function never returns

Function: This is a general purpose device reset. It will jump to

location 0 on PCB and PCM parts and also reset the
registers to power-up state on the PIC18.

Availability: All devices.

Requires: Nothing

Examples:

if(checksum!=0)
 reset_cpu();

Example Files: None

Also See: Nothing

RESTART_CAUSE()

Syntax: value = restart_cause()

Parameters: None

Returns: A value indicating the cause of the last processor reset. The

actual values are device dependent. See the device .h file
for specific values for a specific device. Some example

99

C Compiler Reference Manual
Built-In Functions

values are: WDT_FROM_SLEEP WDT_TIMEOUT,
MCLR_FROM_SLEEP and NORMAL_POWER_UP.

Function: This function will return the reason for the last processor

reset.

Availability: All devices

Requires: Constants are defined in the devices .h file.

Examples:

switch (restart_cause()) {
 case WDT_FROM_SLEEP:
 case WDT_TIMEOUT:
 handle_error();
}

Example Files: ex_wdt.c

Also See: restart_wdt(), reset_cpu()

RESTART_WDT()

Syntax: restart_wdt()

Parameters: None

Returns: undefined

Function: Restarts the watchdog timer. If the watchdog timer is

enabled, this must be called periodically to prevent the
processor from resetting.

 The watchdog timer is used to cause a hardware reset if the

software appears to be stuck.

 The timer must be enabled, the timeout time set and

software must periodically restart the timer. These are done
differently on the PCB/PCM and PCH parts as follows:
 PCB/PCM PCH
Enable/Disable #fuses setup_wdt()
Timeout time setup_wdt() #fuses
restart restart_wdt() restart_wdt()

100

C Compiler Reference Manual
Built-In Functions

Availability: All devices

Requires: #fuses

Examples:

#fuses WDT // PCB/PCM example
 // See setup_wdt for a PIC18 example
main() {
 setup_wdt(WDT_2304MS);
 while (TRUE) {
 restart_wdt();
 perform_activity();
 }
}

Example Files: ex_wdt.c

Also See: #fuses, setup_wdt()

ROTATE_LEFT()

Syntax: rotate_left (address, bytes)

Parameters: address is a pointer to memory, bytes is a count of the

number of bytes to work with.

Returns: undefined

Function: Rotates a bit through an array or structure. The address

may be an array identifier or an address to a byte or
structure (such as &data). Bit 0 of the lowest BYTE in RAM
is considered the LSB.

Availability: All devices.

Requires: Nothing

Examples:

x = 0x86;
rotate_left(&x, 1);
// x is now 0x0d

Example Files: None

Also See: rotate_right(), shift_left(), shift_right()

101

C Compiler Reference Manual
Built-In Functions

ROTATE_RIGHT()

Syntax: rotate_right (address, bytes)

Parameters: address is a pointer to memory, bytes is a count of the

number of bytes to work with.

Returns: undefined

Function: Rotates a bit through an array or structure. The address

may be an array identifier or an address to a byte or
structure (such as &data). Bit 0 of the lowest BYTE in RAM
is considered the LSB.

Availability: All devices

Requires: Nothing

Examples:

struct {
int cell_1 : 4;
int cell_2 : 4;
int cell_3 : 4;
int cell_4 : 4; } cells;
rotate_right(&cells, 2);
rotate_right(&cells, 2);
rotate_right(&cells, 2);
rotate_right(&cells, 2);
// cell_1->4, 2->1, 3->2 and 4-> 3

Example Files: None

Also See: rotate_right(), shift_left(), shift_right()

SET_ADC_CHANNEL()

Syntax: set_adc_channel (chan)

Parameters: chan is the channel number to select. Channel numbers

start at 0 and are labeled in the data sheet AN0, AN1...

Returns: undefined

102

C Compiler Reference Manual
Built-In Functions

Function: Specifies the channel to use for the next READ_ADC call.

Be aware that you must wait a short time after changing the
channel before you can get a valid read. The time varies
depending on the impedance of the input source. In general
10us is good for most applications. You need not change
the channel before every read if the channel does not
change.

Availability: This function is only available on devices with A/D hardware.

Requires: Nothing

Examples:

set_adc_channel(2);
delay_us(10);
value = read_adc();

Example Files: ex_admm.c

Also See: read_adc(), setup_adc(), setup_adc_ports()

SET_PWM1_DUTY()
SET_PWM2_DUTY()

Syntax: set_pwm1_duty (value)
 set_pwm2_duty (value)

Parameters: value may be a 8 or 16 bit constant or variable.

Returns: undefined

Function: Writes the 10-bit value to the PWM to set the duty. An 8-bit

value may be used if the least significant bits are not
required. If value is an 8 bit item it is shifted up with two zero
bits in the lsb positions to get 10 bits. The 10 bit value is
then used to determine the amount of time the PWM signal
is high during each cycle as follows:
• value*(1/clock)*t2div

 Where clock is oscillator frequency and t2div is the timer 2

prescaler (set in the call to setup_timer2).

103

C Compiler Reference Manual
Built-In Functions

Availability: This function is only available on devices with CCP/PWM

hardware.

Requires: Nothing

Examples:

// For a 20 mhz clock, 1.2 khz frequency,
// t2DIV set to 16
// the following sets the duty to 50% (or 416 us).

long duty;

duty = 520; // .000416/(16*(1/20000000))
set_pwm1_duty(duty);

Example Files: ex_pwm.c

Also See: setup_ccpX()

SET_RTCC()
SET_TIMER0()
SET_TIMER1()
SET_TIMER2()
SET_TIMER3()

Syntax: set_timer0(value) or set_rtcc (value)
 set_timer1(value)
 set_timer2(value)
 set_timer3(value)

Parameters: Timers 1 and 3 get a 16 bit int.
 Timer 2 gets an 8 bit int.
 Timer 0 (AKA RTCC) gets a 8 bit int except on the PIC18

where it needs a 16 bit int.

Returns: undefined

Function: Sets the count value of a real time clock/counter. RTCC and

Timer0 are the same. All timers count up. When a
timer reaches the maximum value it will flip over to 0 and
continue counting (254, 255, 0, 1, 2...).

Availability: Timer 0 - All devices
 Timers 1,2 - Most but not all PCM devices

104

C Compiler Reference Manual
Built-In Functions

 Timer 3 - Only PIC18

Requires: Nothing

Examples:

// 20 mhz clock, no prescaler, set timer 0
// to overflow in 35us

set_timer0(81);
// 256-(.000035/(4/20000000))

Example Files: ex_patg.c

Also See: setup_timer_X(1), get_timerX()

SET_TRIS_A()
SET_TRIS_B()
SET_TRIS_C()
SET_TRIS_D()
SET_TRIS_E()

Syntax: set_tris_a (value)
 set_tris_b (value)
 set_tris_c (value)
 set_tris_d (value)
 set_tris_e (value)

Parameters: value is a 8 bit int with each bit representing a bit of the I/O

port.

Returns: undefined

Function: These functions allow the I/O port direction (TRI-State)

registers to be set. This must be used with FAST_IO and
when I/O ports are accessed as memory such as when a
#BYTE directive is used to access an I/O port. Using the
default standard I/O the built in functions set the I/O direction
automatically.

 Each bit in the value represents one pin. A 1 indicates the

pin is input and a 0 indicates it is output.

Availability: All devices (however not all devices have all I/O ports)

105

C Compiler Reference Manual
Built-In Functions

Requires: Nothing

Examples:

SET_TRIS_B(0x0F);
 // B7,B6,B5,B4 are outputs
 // B3,B2,B1,B0 are inputs

Example Files: lcd.c

Also See: #use xxxx_io

SET_UART_SPEED()

Syntax: set_uart_speed (baud)

Parameters: baud is a constant 100-115200 representing the number of

bits per second.

Returns: undefined

Function: Changes the baud rate of the built-in hardware RS232 serial

port at run-time.

Availability: This function is only available on devices with a built in

UART.

Requires: #use rs232

Examples:

// Set baud rate based on setting
// of pins B0 and B1

switch(input_b() & 3) {
 case 0 : set_uart_speed(2400); break;
 case 1 : set_uart_speed(4800); break;
 case 2 : set_uart_speed(9600); break;
 case 3 : set_uart_speed(19200); break;
}

Example Files: loader.c

Also See: #use rs232, putc(), getc()

106

C Compiler Reference Manual
Built-In Functions

SETUP_ADC(mode)

Syntax: setup_adc (mode);

Parameters: mode- Analog to digital mode. The valid options varies

depending on the device. See the devices .h file for all
options. Some typical options include: ADC_OFF or
ADC_CLOCK_INTERNAL

Returns: undefined

Function: Configures the analog to digital converter.

Availability: Only the devices with built in analog to digital converter.

Requires: Constants are defined in the devices .h file.

Examples:

setup_adc_ports(ALL_ANALOG);
setup_adc(ADC_CLOCK_INTERNAL);
set_adc_channel(0);
value = read_adc();
setup_adc(ADC_OFF);

Example Files: ex_admm.c

See Also: setup_adc_ports, set_adc_channel, read_adc, #device. The

device .h file.

SETUP_ADC_PORTS()

Syntax: setup_adc_ports (value)

Parameters: value - a constant defined in the devices .h file

Returns: undefined

Function: Sets up the ADC pins to be analog, digital or a combination.

The allowed combinations vary depending on the chip. The
constants used are different for each chip as well. Check
the device include file for a complete list. The constants
ALL_ANALOG and NO_ANALOGS are valid for all chips.
Some other example constants:

107

C Compiler Reference Manual
Built-In Functions

Availability: This function is only available on devices with A/D hardware.

Requires: Constants are defined in the devices .h file.

Examples:

// All pins analog (that can be)

setup_adc_ports(ALL_ANALOG);

// Pins A0, A1 and A3 are analog and all others
// are digital. The +5v is used as a reference.
setup_adc_ports(RA0_RA1_RA3_ANALOG);

// Pins A0 and A1 are analog. Pin RA3 is used
// for the reference voltage and all other pins
// are digital.
setup_adc_ports(A0_RA1_ANALOGRA3_REF);

Example Files: ex_admm.c

Also See: setup_adc(), read_adc(), set_adc_channel()

SETUP_CCP1()
SETUP_CCP2()

Syntax: setup_ccp1 (mode)
 setup_ccp2 (mode)

Parameters: mode is a constant. Valid constants are in the devices .h file

and are as follows:
 Disable the CCP:

• CCP_OFF

 Set CCP to capture mode:

• CCP_CAPTURE_FE, Capture on falling edge
• CCP_CAPTURE_RE, Capture on rising edge
• CCP_CAPTURE_DIV_4, Capture after 4 pulses
• CCP_CAPTURE_DIV_16, Capture after 16 pulses

Set CCP to compare mode:
• CCP_COMPARE_SET_ON_MATCH, Output high on

compare

108

C Compiler Reference Manual
Built-In Functions

• CCP_COMPARE_CLR_ON_MATCH, Output low on

compare
• CCP_COMPARE_INT, Interrupt on compare
• CCP_COMPARE_RESET_TIMER, Reset timer on

compare

 Set CCP to PWM mode:

• CCP_PWM, Enable Pulse Width Modulator

Returns: undefined

Function: Initialize the CCP. The CCP counters may be accessed

using the long variables CCP_1 and CCP_2. The CCP
operates in 3 modes. In capture mode it will copy the timer 1
count value to CCP_x when the input pin event occurs. In
compare mode it will trigger an action when timer 1 and
CCP_x are equal. In PWM mode it will generate a square
wave. The PCW wizard will help to set the correct mode and
timer settings for a particular application.

Availability: This function is only available on devices with CCP

hardware.

Requires: Constants are defined in the devices .h file.

Examples:

setup_ccp1(CCP_CAPTURE_RE);

Example Files: ex_pwm.c, ex_ccpmp.c, ex_ccp1s.c

Also See: set_pwmX_duty()

SETUP_COMPARATOR()

Syntax: setup_comparator (mode)

Parameters: mode is a constant. Valid constants are in the devices .h file

and are as follows:
• A0_A3_A1_A2
• A0_A2_A1_A2
• NC_NC_A1_A2
• NC_NC_NC_NC
• A0_VR_A1_VR

109

C Compiler Reference Manual
Built-In Functions

• A3_VR_A2_VR
• A0_A2_A1_A2_OUT_ON_A3_A4
• A3_A2_A1_A2

Returns: undefined

Function: Sets the analog comparator module. The above constants

have four parts representing the inputs: C1-, C1+, C2-, C2+

Availability: This function is only available on devices with an analog

comparator.

Requires: Constants are defined in the devices .h file.

Examples:

// Sets up two independent comparators (C1 and C2),
// C1 uses A0 and A3 as inputs (- and +), and C2
// uses A1 and A2 as inputs
setup_comparator(A0_A3_A1_A2);

Example Files: ex_comp.c

Also See: None

SETUP_COUNTERS()

Syntax: setup_counters (rtcc_state, ps_state)

Parameters: rtcc_state may be one of the constants defined in the

devices .h file. For example: RTCC_INTERNAL,
RTCC_EXT_L_TO_H or RTCC_EXT_H_TO_L

 ps_state may be one of the constants defined in the devices

.h file.
 For example: RTCC_DIV_2, RTCC_DIV_4, RTCC_DIV_8,

RTCC_DIV_16, RTCC_DIV_32, RTCC_DIV_64,
RTCC_DIV_128, RTCC_DIV_256, WDT_18MS,
WDT_36MS, WDT_72MS, WDT_144MS, WDT_288MS,
WDT_576MS, WDT_1152MS, WDT_2304MS

Returns: undefined

110

C Compiler Reference Manual
Built-In Functions

Function: Sets up the RTCC or WDT. The rtcc_state determines what

drives the RTCC. The PS state sets a prescaler for either
the RTCC or WDT. The prescaler will lengthen the cycle of
the indicated counter. If the RTCC prescaler is set the WDT
will be set to WDT_18MS. If the WDT prescaler is set the
RTCC is set to RTCC_DIV_1.

 This function is provided for compatibility with older versions.

setup_timer_0 and setup_WDT are the recommended
replacements when possible. For PCB devices if an external
RTCC clock is used and a WDT prescaler is used then this
function must be used.

Availability: All devices

Requires: Constants are defined in the devices .h file.

Examples:

setup_counters (RTCC_INTERNAL, WDT_2304MS);

Example Files: None

Also See: setup_wdt(), setup_timer_0(), devices .h file

SETUP_LCD()

Syntax: setup_lcd (mode, prescale, segments);

Parameters: Mode may be one of these constants from the devices .h

file:
 LCD_DISABLED, LCD_STATIC, LCD_MUX12,

LCD_MUX13, LCD_MUX14
 The following may be or'ed (via |) with any of the above:
 STOP_ON_SLEEP, USE_TIMER_1

 Prescale may be 0-15 for the LCD clock segments may be

any of the following constants or'ed together: SEGO_4,
SEG5_8, SEG9_11, SEG12_15, SEG16_19, SEGO_28,
SEG29_31, ALL_LCD_PINS

Returns: undefined

Function: This function is used to initialize the 923/924 LCD controller.

111

C Compiler Reference Manual
Built-In Functions

Availability: Only devices with built in LCD drive hardware.

Requires: Constants are defined in the devices .h file.

Examples:

setup_lcd(LCD_MUX14|STOP_ON_SLEEP,2,
 ALL_LCD_PINS);

Example Files: ex_92lcd.c

Also See: lcd_symbol(), lcd_load()

SETUP_PSP()

Syntax: setup_psp (mode)

Parameters: mode may be:

• PSP_ENABLED
• PSP_DISABLED

Returns: undefined

Function: Initializes the Parallel Slave Port (PSP). The

SET_TRIS_E(value) function may be used to set the data
direction. The data may be read and written to using the
variable PSP_DATA.

Availability: This function is only available on devices with PSP

hardware.

Requires: Constants are defined in the devices .h file.

Examples:

setup_psp(PSP_ENABLED);

Example Files: ex_psp.c

Also See: set_tris_e()

SETUP_SPI()

Syntax: setup_spi (mode)

112

C Compiler Reference Manual
Built-In Functions

Parameters: modes may be:

• SPI_MASTER, SPI_SLAVE, SPI_SS_DISABLED
• SPI_L_TO_H, SPI_H_TO_L
• SPI_CLK_DIV_4, SPI_CLK_DIV_16,
• SPI_CLK_DIV_64, SPI_CLK_T2
• Constants from each group may be or'ed together with |.

Returns: undefined

Function: Initializes the Serial Port Interface (SPI). This is used for 2

or 3 wire serial devices that follow a common clock/data
protocol.

Availability: This function is only available on devices with SPI hardware.

Requires: Constants are defined in the devices .h file.

Examples:

setup_spi(spi_master |spi_l_to_h |
 spi_clk_div_16);

Example Files: ex_spi.c

Also See: spi_write(), spi_read(), spi_data_is_in()

SETUP_TIMER_0 ()

Syntax: setup_timer_0 (mode)

Parameters: mode may be one or two of the constants defined in the

devices .h file. RTCC_INTERNAL, RTCC_EXT_L_TO_H or
RTCC_EXT_H_TO_L

 RTCC_DIV_2, RTCC_DIV_4, RTCC_DIV_8, RTCC_DIV_16,

RTCC_DIV_32, RTCC_DIV_64, RTCC_DIV_128,
RTCC_DIV_256

 PIC18 only: RTCC_OFF, RTCC_8_BIT

 One constant may be used from each group or'ed together

with the | operator.

113

C Compiler Reference Manual
Built-In Functions

Returns: undefined

Function: Sets up the timer 0 (aka RTCC).

Availability: All devices.

Requires: Constants are defined in the devices .h file.

Examples:

setup_timer_0 (RTCC_DIV_2|RTCC_EXT_L_TO_H);

Example Files: ex_stwt.c

Also See: get_timer0(), set_timer0(), setup_counters()

SETUP_TIMER_1()

Syntax: setup_timer_1 (mode)

Parameters: mode values may be:

• T1_DISABLED, T1_INTERNAL, T1_EXTERNAL,
T1_EXTERNAL_SYNC

• T1_CLK_OUT
• T1_DIV_BY_1, T1_DIV_BY_2, T1_DIV_BY_4,

T1_DIV_BY_8
• constants from different groups may be or'ed together with

|.

Returns: undefined

Function: Initializes timer 1. The timer value may be read and written

to using SET_TIMER1() and GET_TIMER1().

 Timer 1 is a 16 bit timer. With an internal clock at 20mhz,

the timer will increment every 1.6us. It will overflow every
104.8576ms.

Availability: This function is only available on devices with timer 1

hardware.

Requires: Constants are defined in the devices .h file.

Examples:

114

C Compiler Reference Manual
Built-In Functions

setup_timer_1 (T1_DISABLED);
setup_timer_1 (T1_INTERNAL | T1_DIV_BY_4);
setup_timer_1 (T1_INTERVAL | T1_DIV_BY_8);

Example Files: ex_patg.c

Also See: get_timer1(),

SETUP_TIMER_2()

Syntax: setup_timer_2 (mode, period, postscale)

Parameters: mode may be one of:

• T2_DISABLED, T2_DIV_BY_1, T2_DIV_BY_4,
T2_DIV_BY_16

 period is a int 0-255 that determines when the clock value is

reset,

 postscale is a number 1-16 that determines how many timer

resets before an interrupt: (1 means one reset, 2 means 2,
and so on).

Returns: undefined

Function: Initializes timer 2. The mode specifies the clock divisor

(from the oscillator clock). The timer value may be read
and written to using GET_TIMER2() and SET_TIMER2().
Timer 2 is a 8 bit counter/timer.

Availability: This function is only available on devices with timer 2

hardware.

Requires: Constants are defined in the devices .h file.

Examples:

setup_timer_2 (T2_DIV_BY_4, 0xc0, 2);
 // At 20mhz, the timer will include every 800ns,
 // will overflow every 153.6us,
 // and will interrupt every 460.3us.

Example Files: ex_pwm.c

Also See: get_timer2(), set_timer2()

115

C Compiler Reference Manual
Built-In Functions

SETUP_TIMER_3()

Syntax: setup_timer_3 (mode)

Parameters: Mode may be one of the following constants from each

group or'ed (via |) together:
• T3_DISABLED, T3_INTERNAL, T3_EXTERNAL,

T3_EXTERNAL_SYNC, T3_DIV_BY_1, T3_DIV_BY_2,
T3_DIV_BY_4, T3_DIV_BY_8

Returns: undefined

Function: Initializes timer 3. The mode specifies the clock divisor

(from the oscillator clock). The timer value may be read
and written to using GET_TIMER3() and SET_TIMER3().
Timer 3 is a 16 bit counter/timer.

Availability: This function is only available on PIC18 devices.

Requires: Constants are defined in the devices .h file.

Examples:

setup_timer_3 (T3_INTERNAL | T3_DIV_BY_2);

Example Files: None

Also See: get_timer3(), set_timer3()

SETUP_VREF()

Syntax: setup_vref (mode | value)

Parameters: mode may be one of the following constants:

• FALSE (off)
• VREF_LOW for VDD*VALUE/24
• VREF_HIGH for VDD*VALUE/32 + VDD/4
• any may be or'ed with VREF_A2.

 value is an int 0-15.

Returns: undefined

116

C Compiler Reference Manual
Built-In Functions

Function: Establishes the voltage of the internal reference that may be

used for analog compares and/or for output on pin A2.

Availability: This function is only available on devices with VREF

hardware.

Requires: Constants are defined in the devices .h file.

Examples:

setup_vref (VREF_HIGH | 6);
// At VDD=5, the voltage is 2.19V

Example Files: ex_comp.c

Also See: None

SETUP_WDT ()

Syntax: setup_wdt (mode)

Parameters: For PCB/PCM parts: WDT_18MS, WDT_36MS,

WDT_72MS, WDT_144MS,WDT_288MS, WDT_576MS,
WDT_1152MS, WDT_2304MS

For PIC18 parts: WDT_ON, WDT_OFF

Returns: undefined

Function: Sets up the watchdog timer.

 The watchdog timer is used to cause a hardware reset if the

software appears to be stuck.

 The timer must be enabled, the timeout time set and

software must periodically restart the timer. These are done
differently on the PCB/PCM and PCH parts as follows:
 PCB/PCM PCH
Enable/Disable #fuses setup_wdt()
Timeout time setup_wdt() #fuses
restart restart_wdt() restart_wdt()

Availability: All devices

117

C Compiler Reference Manual
Built-In Functions

Requires: #fuses, Constants are defined in the devices .h file.

Examples:

#fuses WDT_18MS // PIC18 example, See
 // restart_wdt for a PIC18 example
main() {
 setup_wdt(WDT_ON);
 while (TRUE) {
 restart_wdt();
 perform_activity();
 }
}

Example Files: ex_wdt.c

Also See: #fuses, restart_wdt()

SHIFT_LEFT()

Syntax: shift_left (address, bytes, value)

Parameters: address is a pointer to memory, bytes is a count of the

number of bytes to work with, value is a 0 to 1 to be shifted
in.

Returns: 0 or 1 for the bit shifted out

Function: Shifts a bit into an array or structure. The address may be

an array identifier or an address to a structure (such as
&data). Bit 0 of the lowest byte in RAM is treated as the
LSB.

Availability: All devices

Requires: Nothing

Examples:

byte buffer[3];
for(i=0; i<=24; ++i){
 // wait for clock high
 while (!input(PIN_A2));
 shift_left(buffer,3,input(PIN_A3));
 // wait for clock low
 while (input(PIN_A2)); }
// reads 24 bits from pin A3,each bit is read on

118

C Compiler Reference Manual
Built-In Functions

// a low to high on pin A2

Example Files: ex_extee.c with 9356.c

Also See: shift_right(), rotate_right(), rotate_left(), <<, >>

SHIFT_RIGHT()

Syntax: shift_right (address, bytes, value)

Parameters: address is a pointer to memory, bytes is a count of the

number
 of bytes to work with, value is a 0 to 1 to be shifted in.

Returns: 0 or 1 for the bit shifted out

Function: Shifts a bit into an array or structure. The address may be

an array identifier or an address to a structure (such as
&data). Bit 0 of the lowest byte in RAM is treated as the
LSB.

Availability: All devices

Requires: Nothing

Examples:

// reads 16 bits from pin A1, each bit is read on
// a low to high on pin A2
struct {
 byte time;
 byte command : 4;
 byte source : 4;} msg;

for(i=0; i<=16; ++i) {
 while(!input(PIN_A2));
 shift_right(&msg,3,input(PIN_A1));
 while (input(PIN_A2)) ;}

// This shifts 8 bits out PIN_A0, LSB first.
for(i=0;i<8;++i)
 output_bit(PIN_A0,shift_right(&data,1,0));

Example Files: ex_extee.c with 9356.c

Also See: shift_left(), rotate_right(), rotate_left(), <<, >>

119

C Compiler Reference Manual
Built-In Functions

SIN ()
COS()
TAN()
ASIN()
ACOS()
ATAN()

Syntax: val = sin (rad)
 val = cos (rad)
 val = tan (rad)
 rad = asin (val)
 rad = acos (val)
 rad = atan (val)

Parameters: rad is a float representing an angle in Radians -2pi to 2pi.

val is a float with the range -1.0 to 1.0

Returns: rad is a float representing an angle in Radians -pi/2 to pi/2
 val is a float with the range -1.0 to 1.0

Function: These functions perform basic Triga metric functions.

Availability: All devices.

Requires: MATH.H must be included.

Examples:

float phase;
// Output one sine wave
for(phase=0; phase<2*3.141596; phase+=0.01)

 set_analog_voltage(sin(phase)+1);

Example Files: ex_tank.c

Also See: log(), log10(), exp(), pow(), sqrt()

SLEEP()

Syntax: sleep()

Parameters: None

120

C Compiler Reference Manual
Built-In Functions

Returns: undefined

Function: Issues a SLEEP instruction. Details are device dependent

however in general the part will enter low power mode and
halt program execution until woken by specific external
events. Depending on the cause of the wake up execution
may continue after the sleep instruction. The compiler
inserts a sleep() after the last statement in main().

SPI_DATA_IS_IN()

Availability: All devices

Requires: Nothing

Examples:

SLEEP();

Example Files: ex_wakup.c

Also See: reset_cpu()

Syntax: result = spi_data_is_in()

Parameters: None

while(!spi_data_is_in() && input(PIN_B2)) ;

Returns: 0 (FALSE) or 1 (TRUE)

Function: Returns TRUE if data has been received over the SPI.

Availability: This function is only available on devices with SPI hardware.

Requires: Nothing

Examples:

if(spi_data_is_in())
 data = spi_read();

Example Files: None

Also See: spi_read(), spi_write()

121

C Compiler Reference Manual
Built-In Functions

SPI_READ()

Syntax: value = spi_read (data)

Parameters: data is optional and if included is an 8 bit int.

Returns: An 8 bit int

Function: Return a value read by the SPI. If a value is passed to

SPI_READ the data will be clocked out and the data
received will be returned. If no data is ready, SPI_READ will
wait for the data.

 If this the other device supplies the clock then either call
SPI_READ() to wait for the clock and data or use
SPI_DATA_IS_IN() to determine if data is ready.

If this device supplies the clock then either do a
SPI_WRITE(data) followed by a SPI_READ() or do a
SPI_READ(data). These both do the same thing and will
generate a clock. If there is no data to send just do a
SPI_READ(0) to get the clock.

Availability: This function is only available on devices with SPI hardware.

Requires: Nothing

Examples:
in_data = spi_read(out_data);

Example Files: ex_spi.c

Also See: spi_data_is_in(), spi_write()

SPI_WRITE()

Syntax: SPI_WRITE (value)

Parameters: value is an 8 bit int

Returns: Nothing

122

C Compiler Reference Manual
Built-In Functions

Function: Sends a byte out the SPI interface. This will cause 8 clocks

to be generated. This function will write the value out to the
SPI.

Availability: This function is only available on devices with SPI hardware.

Requires: Nothing

Examples:

spi_write(data_out);
data_in = spi_read();

SQRT()

Example Files: ex_spi.c

Also See: spi_read(), spi_data_is_in()

Syntax: result = sqrt (value)

Parameters: value is a float

Returns: A float

Function: Computes the non-negative square root of the float x. If the

argument is negative, the behavior is undefined.

Availability: All devices

Requires: #include <math.h>

Examples:

distance = sqrt(sqr(x1-x2) + sqr(y1-y2));

Example Files: None

Also See: None

123

C Compiler Reference Manual
Built-In Functions

STANDARD STRING FUNCTIONS
STRCAT()
STRCHR()
STRRCHR()
STRCMP()
STRNCMP()
STRICMP()
STRNCPY()
STRCSPN()
STRSPN()

 iresult=strncmp (s1, s2, n) Compare s1 to s2 (n bytes)

Parameters: s1 and s2 are pointers to an array of characters (or the
name of an array). Note that s1 and s2 MAY NOT BE A
CONSTANT (like "hi").

STRLEN()
STRLWR()
STRPBRK()
STRSTR()

Syntax: ptr=strcat (s1, s2) Concatenate s2 onto s1
 ptr=strchr (s1, c) Find c in s1 and return &s1[i]
 ptr=strrchr (s1, c) Same but search in reverse
 cresult=strcmp (s1, s2) Compare s1 to s2

 iresult=stricmp (s1, s2) Compare and ignore case
 ptr=strncpy (s1, s2, n) Copy up to n characters s2->s1
 iresult=strcspn (s1, s2) Count of initial chars in s1 not in s2
 iresult=strspn (s1, s2) Count of initial chars in s1 also in s2
 iresult=strlen (s1) Number of characters in s1
 ptr=strlwr (s1) Convert string to lower case
 ptr=strpbrk (s1, s2) Search s1 for first char also in s2
 ptr=strstr (s1, s2) Search for s2 in s1

 n is a count of the maximum number of character to operate

on.

 c is a 8 bit character

Returns: ptr is a copy of the s1 pointer
 iresult is an 8 bit int

124

C Compiler Reference Manual
Built-In Functions

 result is -1 (less than), 0 (equal) or 1 (greater than)

Function: Functions are identified above.

strcpy(string2,"there");

 // Will print 8

STRTOK()

Availability: All devices

Requires: #include <string.h>

Examples:

char string1[10], string2[10];

strcpy(string1,"hi ");

strcat(string1,string2);

printf("Length is %u\r\n", strlen(string1));

Example Files: ex_str.c

Also See: strcpy(), strtok()

Syntax: ptr = strtok(s1, s2)

Parameters: s1 and s2 are pointers to an array of characters (or the

name of an array). Note that s1 and s2 MAY NOT BE A
CONSTANT (like "hi"). s1 may be 0 to indicate a continue
operation.

Returns: ptr points to a character in s1 or is 0

Function: Finds next token in s1 delimited by a character from

separator string s2 (which can be different from call to call),
and returns pointer to it.

 First call starts at beginning of s1 searching for the first

character NOT contained in s2 and returns null if there is
none are found.

 If none are found, it is the start of first token (return value).

Function then searches from there for a character contained
in s2.

125

C Compiler Reference Manual
Built-In Functions

 If none are found, current token extends to the end of s1,

and subsequent searches for a token will return null.

 If one is found, it is overwritten by '\0', which terminates

current token. Function saves pointer to following character
from which next search will start.

 Each subsequent call, with 0 as first argument, starts

searching from the saved pointer.

Availability: All devices

strcpy(string,"one,two,three;");

 // Prints:

Example Files: ex_str.c

Also See: strxxxx(), strcpy()

STRCPY()

Requires: #include <string.h>

Examples:

char string[30], term[3], *ptr;

strcpy(term,",;");

ptr = strtok(string, term);
while(ptr!=0) {
 puts(ptr);
 ptr = strtok(0, term);
 }

 one
 two
 three

Syntax: strcpy (dest, src)

Parameters: dest is a pointer to a RAM array of characters.
 src may be either a pointer to a RAM array of characters or

it may be a constant string.

Returns: undefined

126

C Compiler Reference Manual
Built-In Functions

Function: Copies a constant or RAM string to a RAM string. Strings

are terminated with a 0.

Availability: All devices.

Requires: Nothing

Examples:

char string[10], string2[10];
.
.
.
strcpy (string, "Hi There");

strcpy(string2,string);

Example Files: ex_str.c

Also See: strxxxx()

SWAP()

Syntax: swap (lvalue)

Parameters: lvalue is a byte variable

Returns: undefined - WARNING: this function does not return the

result

Function: Swaps the upper nibble with the lower nibble of the specified

byte. This is the same as:

byte = (byte << 4) | (byte >> 4);

Availability: All devices

Requires: Nothing

Examples:

x=0x45;
swap(x);
//x now is 0x54

Example Files: None

Also See: rotate_right(), rotate_left()

127

C Compiler Reference Manual
Built-In Functions

TAN()

See: sin()

TOLOWER()
TOUPPER()

Syntax: result = tolower (cvalue)
 result = toupper (cvalue)

Parameters: cvalue is a character

Returns: A 8 bit character

Function: These functions change the case of letters in the alphabet.

 TOLOWER(X) will return 'a'..'z' for X in 'A'..'Z' and all other

characters are unchanged. TOUPPER(X) will return 'A'..'Z'
for X in 'a'..'z' and all other characters are unchanged.

Availability: All devices.

Requires: Nothing

Examples:

switch(toupper(getc())) {
 case 'R' : read_cmd(); break;
 case 'W' : write_cmd(); break;
 case 'Q' : done=TRUE; break;
}

Example Files: ex_str.c

Also See: None

WRITE_BANK()

Syntax: write_bank (bank, offset, value)

Parameters: bank is the physical RAM bank 1-3 (depending on the

device), offset is the offset into user RAM for that bank
(starts at 0), value is the 8 bit data to write

128

C Compiler Reference Manual
Built-In Functions

Returns: undefined

Function: Write a data byte to the user RAM area of the specified

memory bank. This function may be used on some devices
where full RAM access by auto variables is not efficient.
For example on the PIC16C57 chip setting the pointer size
to 5 bits will generate the most efficient ROM code however
auto variables can not be above 1Fh. Instead of going to 8
bit pointers you can save ROM by using this function to write
to the hard to reach banks. In this case the bank may be 1-3
and the offset may be 0-15.

Availability: All devices but only useful on PCB parts with memory over

1Fh and PCM parts with memory over FFh.

Requires: Nothing

Examples:

i=0; // Uses bank 1 as a RS232 buffer
do {
 c=getc();

Example Files: ex_psp.c

 write_bank(1,i++,c);
} while (c!=0x13);

Also See: See the "Common Questions and Answers" section for more

information.

WRITE_EEPROM()

Syntax: write_eeprom (address, value)

Function: Write a byte to the specified data EEPROM address. This
function may take several milliseconds to execute. This
works only on devices with EEPROM built into the core of
the device.

Parameters: address is a 8 bit int, the range is device dependent, value

is an 8 bit int

Returns: undefined

129

C Compiler Reference Manual
Built-In Functions

 For devices with external EEPROM or with a separate

EEPROM in the same package (line the 12CE671) see
EX_EXTEE.c with CE51X.c, CE61X.c or CE67X.c.

Availability: This function is only available on devices with supporting

hardware on chip.

Requires: Nothing

write_eeprom(LAST_VOLUME,volume);

Examples:

#define LAST_VOLUME 10 // Location in EEPROM

volume++;

Example Files: ex_intee.c

Also See: read_eeprom(), write_program_eeprom(),
read_program_eeprom(),

 ex_extee.c with ce51x.c, ce61x.c or ce67x.c.

WRITE_PROGRAM_EEPROM ()

Syntax: write_program_eeprom (address, data)

// Disables Program

Parameters: address is 16 bits on PCM parts and 32 bits on PCH parts,
 data is 16 bits on PCM parts and 8 bits on PCH parts.

Returns: undefined

Function: Writes to the specified program EEPROM area.

Availability: Only devices that allow writes to program memory.

Requires: Nothing

Examples:

write_program_eeprom(0,0x2800);

Example Files: ex_load.c, loader.c

Also See: read_program_eeprom(), read_eeprom(), write_eeprom()

130

C Compiler Reference Manual
Compiler Error Messages

COMPILER ERROR MESSAGES

#ENDIF with no corresponding #IF
A numeric expression must appear here. The indicated item must evaluate to a
number.

A #DEVICE required before this line

Array dimensions must be specified

Attempt to create a pointer to a constant

An attempt was made to apply #INLINE or #SEPARATE to something other than
a function.

The compiler could not create code for the specified baud rate. If the internal
UART is being used the combination of the clock and the UART capabilities
could not get a baud rate within 3% of the requested value. If the built in UART
is not being used then the clock will not permit the indicated baud rate. For fast
baud rates, a faster clock will be required.

The compiler requires a #device before it encounters any statement or compiler
directive that may cause it to generate code. In general #defines may appear
before a #device but not much more.

A numeric expression must appear here
Some C expression (like 123, A or B+C) must appear at this spot in the code.
Some expression that will evaluate to a value.

The [] notation is not permitted in the compiler. Specific dimensions must be
used. For example A[5].

Arrays of bits are not permitted
Arrays may not be of SHORT INT. Arrays of Records are permitted but the
record size is always rounded up to the next byte boundary.

Constant tables are implemented as functions. Pointers cannot be created to
functions. For example CHAR CONST MSG[9]={"HI THERE"}; is permitted,
however you cannot use &MSG. You can only reference MSG with subscripts
such as MSG[i] and in some function calls such as Printf and STRCPY.

Attributes used may only be applied to a function (INLINE or SEPARATE)

Bad expression syntax
This is a generic error message. It covers all incorrect syntax.

Baud rate out of range

131

C Compiler Reference Manual
Compiler Error Messages

BIT variable not permitted here
Addresses cannot be created to bits. For example &X is not permitted if X is a
SHORT INT.

Can’t change device type this far into the code
The #DEVICE is not permitted after code is generated that is device specific.
Move the #DEVICE to an area before code is generated.

As it says the constant is too big.

This is usually caused by a missing or mis-placed (or) within a define.

An attempt was made to divide by zero at compile time using constants.

Character constant constructed incorrectly
Generally this is due to too many characters within the single quotes. For
example 'ab' is an error as is '\nr'. The backslash is permitted provided the result
is a single character such as '\010' or '\n'.

Constant out of the valid range
This will usually occur in inline assembly where a constant must be within a
particular range and it is not. For example BTFSC 3,9 would cause this error
since the second operand must be from 0-8.

Constant too large, must be < 65536

Define expansion is too large
A fully expanded DEFINE must be less than 255 characters. Check to be sure
the DEFINE is not recursively defined.

Define syntax error

Different levels of indirection
This is caused by a INLINE function with a reference parameter being called with
a parameter that is not a variable. Usually calling with a constant causes this.

Divide by zero

Duplicate case value
Two cases in a switch statement have the same value.

Duplicate DEFAULT statements
The DEFAULT statement within a SWITCH may only appear once in each
SWITCH. This error indicates a second DEFAULT was encountered.

132

C Compiler Reference Manual
Compiler Error Messages

Duplicate #define
The identifier in the #define has already been used in a previous #define. The
redefine an identifier use #UNDEF first. To prevent defines that may be included
from multiple source do something like:

A function has already been defined with this name. Remember that the
compiler is not case sensitive unless a #CASE is used.

Check that the {and} match up correctly.

The end of the source file has been reached and a comment (started with /*) is
still in effect. The */ is missing.

• #ifndef ID
• #define ID text
• #endif

Duplicate function

Duplicate Interrupt Procedure
Only one function may be attached to each interrupt level. For example the
#INT_RB may only appear once in each program.

Duplicate USE
Some USE libraries may only be invoked once since they apply to the entire
program such as #USE DELAY. These may not be changed throughout the
program.

Element is not a member
A field of a record identified by the compiler is not actually in the record. Check
the identifier spelling.

ELSE with no corresponding IF

End of file while within define definition
The end of the source file was encountered while still expanding a define. Check
for a missing).

End of source file reached without closing comment */ symbol

Error in define syntax

Error text not in file
The error is a new error not in the error file on your disk. Check to be sure that
the errors.txt file you are using came on the same disk as the version of software
you are executing. Call CCS with the error number if this does not solve the
problem.

133

C Compiler Reference Manual
Compiler Error Messages

Expect ;
Expect comma
Expect WHILE
Expect }
Expecting :
Expecting =

Expecting a ; or {

Expecting a {

Expression must be a constant or simple variable

The indicated expression must evaluate to a constant at compile time. For
example 5*3+1 is permitted but 5*x+1 where X is a INT is not permitted. If X
were a DEFINE that had a constant value then it is permitted.

Expecting a (
Expecting a , or)
Expecting a , or }
Expecting a .
Expecting a ; or ,

Expecting a close paren
Expecting a declaration
Expecting a structure/union
Expecting a variable
Expecting a]

Expecting an =
Expecting an array
Expecting an expression
Expecting an identifier
Expecting an opcode mnemonic
This must be a Microchip mnemonic such as MOVLW or BTFSC.

Expecting LVALUE such as a variable name or * expression
This error will occur when a constant is used where a variable should be. For
example 4=5; will give this error.

Expecting a basic type
Examples of a basic type are INT and CHAR.

Expecting procedure name

The indicated expression must evaluate to a constant at compile time. For
example 5*3+1 is permitted but 5*x+1 where X is a INT is not permitted. If X
were a DEFINE that had a constant value then it is permitted.

Expression must evaluate to a constant

134

C Compiler Reference Manual
Compiler Error Messages

Expression too complex
This expression has generated too much code for the compiler to handle for a
single expression. This is very rare but if it happens, break the expression up
into smaller parts.

Too many assembly lines are being generated for a single C statement. Contact
CCS to increase the internal limits.

Extra characters on preprocessor command line
Characters are appearing after a preprocessor directive that do not apply to that
directive. Preprocessor commands own the entire line unlike the normal C
syntax. For example the following is an error:
 #PRAGMA DEVICE <PIC16C74> main() { int x; x=1;}

File in #INCLUDE can not be opened
Check the filename and the current path. The file could not be opened.

Filename must start with " or <

A floating-point number is not permitted in the operation near the error. For
example, ++F where F is a float is not allowed.

Filename must terminate with " or >

Floating-point numbers not supported

Function definition different from previous definition
This is a mis-match between a function prototype and a function definition. Be
sure that if a #INLINE or #SEPARATE are used that they appear for both the
prototype and definition. These directives are treated much like a type specifier.

Function used but not defined
The indicated function had a prototype but was never defined in the program.

Identifier is already used in this scope
An attempt was made to define a new identifier that has already been defined.

Illegal C character in input file
A bad character is in the source file. Try deleting the line and re-typing it.

Improper use of a function identifier
Function identifiers may only be used to call a function. An attempt was made to
otherwise reference a function. A function identifier should have a (after it.

135

C Compiler Reference Manual
Compiler Error Messages

Incorrectly constructed label
This may be an improperly terminated expression followed by a label. For
example:
x=5+
MPLAB:

Initialization of unions is not permitted
Structures can be initialized with an initial value but UNIONS cannot be.

Internal compiler limit reached
The program is using too much of something. An internal compiler limit was
reached. Contact CCS and the limit may be able to be expanded.

Invalid conversion from LONG INT to INT
In this case, a LONG INT cannot be converted to an INT. You can type cast the
LONG INT to perform a truncation. For example:
I = INT(LI);

Internal Error - Contact CCS
This error indicates the compiler detected an internal inconsistency. This is not
an error with the source code; although, something in the source code has
triggered the internal error. This problem can usually be quickly corrected by
sending the source files to CCS so the problem can be re-created and corrected.

In the meantime if the error was on a particular line, look for another way to
perform the same operation. The error was probably caused by the syntax of the
identified statement. If the error was the last line of the code, the problem was in
linking. Look at the call tree for something out of the ordinary.

Invalid parameters to shift function
Built-in shift and rotate functions (such as SHIFT_LEFT) require an expression
that evaluates to a constant to specify the number of bytes.

Invalid ORG range
The end address must be greater than or equal to the start address. The range
may not overlap another range. The range may not include locations 0-3. If only
one address is specified it must match the start address of a previous #org.

Invalid Pre-Processor directive
The compiler does not know the preprocessor directive. This is the identifier in
one of the following two places:
#xxxxx

136

C Compiler Reference Manual
Compiler Error Messages

#PRAGMA xxxxx

Library in USE not found
The identifier after the USE is not one of the pre-defined libraries for the
compiler. Check the spelling.

Missing #ENDIF

No MAIN() function found

The program requires more RAM than is available. The memory map (ALT-M)
will show variables allocated. The ALT-T will show the RAM used by each
function. Additional RAM usage can be obtained by breaking larger functions
into smaller ones and splitting the RAM between them.

LVALUE required
This error will occur when a constant is used where a variable should be. For
example 4=5; will give this error.

Macro identifier requires parameters
A #DEFINE identifier is being used but no parameters were specified ,as
required. For example:
#define min(x,y) ((x<y)?x:y)
When called MIN must have a (--,--) after it such as:
r=min(value, 6);

A #IF was found without a corresponding #ENDIF.

Missing or invalid .REG file
The user registration file(s) are not part of the download software. In order for
the software to run the files must be in the same directory as the .EXE files.
These files are on the original diskette, CD ROM or e-mail in a non-compressed
format. You need only copy them to the .EXE directory. There is one .REG file
for each compiler (PCB.REG, PCM.REG and PCH.REG).

Must have a #USE DELAY before a #USE RS232
The RS232 library uses the DELAY library. You must have a #USE DELAY
before you can do a #USE RS232.

All programs are required to have one function with the name main().

Not enough RAM for all variables

For example, a function A may perform a series of operations and have 20 local
variables declared. Upon analysis, it may be determined that there are two main
parts to the calculations and many variables are not shared between the parts. A

137

C Compiler Reference Manual
Compiler Error Messages

function B may be defined with 7 local variables and a function C may be defined
with 7 local variables. Function A now calls B and C and combines the results
and now may only need 6 variables. The savings are accomplished because B
and C are not executing at the same time and the same real memory locations
will be used for their 6 variables (just not at the same time). The compiler will
allocate only 13 locations for the group of functions A, B, C where 20 were
required before to perform the same operation.

Number of bits is out of range
For a count of bits, such as in a structure definition, this must be 1-8. For a bit
number specification, such as in the #BIT, the number must be 0-7.

Out of ROM, A segment or the program is too large
A function and all of the INLINE functions it calls must fit into one segment (a
hardware code page). For example, on the '56 chip a code page is 512
instructions. If a program has only one function and that function is 600
instructions long, you will get this error even though the chip has plenty of ROM
left. The function needs to be split into at least two smaller functions. Even after
this is done, this error may occur since the new function may be only called once
and the linker might automatically INLINE it. This is easily determined by
reviewing the call tree via ALT-T. If this error is caused by too many functions
being automatically INLINED by the linker, simply add a #SEPARATE before a
function to force the function to be SEPARATE. Separate functions can be
allocated on any page that has room. The best way to understand the cause of
this error is to review the calling tree via ALT-T.

Parameters not permitted
An identifier that is not a function or preprocessor macro can not have a (after it.

Pointers to bits are not permitted
Addresses cannot be created to bits. For example, &X is not permitted if X is a
SHORT INT.

Pointers to functions are not valid
Addresses cannot be created to functions.

Previous identifier must be a pointer
A -> may only be used after a pointer to a structure. It cannot be used on a
structure itself or other kind of variable.

Printf format type is invalid
An unknown character is after the % in a printf. Check the printf reference for
valid formats.

138

C Compiler Reference Manual
Compiler Error Messages

Printf format (%) invalid
A bad format combination was used. For example, %lc.

Printf variable count (%) does not match actual count
The number of % format indicators in the printf does not match the actual
number of variables that follow. Remember in order to print a single %, you must
use %%.

Structure field name required

Subscript out of range

A numeric result is required here and the expression used will not evaluate to a
number.

Recursion not permitted
The linker will not allow recursive function calls. A function may not call itself and
it may not call any other function that will eventually re-call it.

Recursively defined structures not permitted
A structure may not contain an instance of itself.

Reference arrays are not permitted
A reference parameter may not refer to an array.

Return not allowed in void function
A return statement may not have a value if the function is void.

String too long

A structure is being used in a place where a field of the structure must appear.
Change to the form s.f where s is the structure name and f is a field name.

Structures and UNIONS cannot be parameters (use * or &)
A structure may not be passed by value. Pass a pointer to the structure using &.

A subscript to a RAM array must be at least 1 and not more than 128 elements.
Note that large arrays might not fit in a bank. ROM arrays may not occupy more
than 256 locations.

This expression cannot evaluate to a number

This type cannot be qualified with this qualifier
Check the qualifiers. Be sure to look on previous lines. An example of this error
is:

139

C Compiler Reference Manual
Compiler Error Messages

VOID X;

Too many constant structures to fit into available space

No more than 10 include files may be open at a time.

Too many parameters

Too many #DEFINE statements
The internal compiler limit for the permitted number of defines has been reached.
Call CCS to find out if this can be increased.

Too many array subscripts
Arrays are limited to 5 dimensions.

Available space depends on the chip. Some chips only allow constant structures
in certain places. Look at the last calling tree to evaluate space usage. Constant
structures will appear as functions with a @CONST at the beginning of the name.

Too many identifiers have been defined
The internal compiler limit for the permitted number of variables has been
reached. Call CCS to find out if this can be increased.

Too many identifiers in program
The internal compiler limit for the permitted number of identifiers has been
reached. Call CCS to find out if this can be increased.

Too many nested #INCLUDEs

More parameters have been given to a function than the function was defined
with.

Too many subscripts
More subscripts have been given to an array than the array was defined with.

Type is not defined
The specified type is used but not defined in the program. Check the spelling.

Type specification not valid for a function
This function has a type specifier that is not meaningful to a function.

Undefined identifier
The specified identifier is being used but has never been defined. Check the
spelling.

Undefined label that was used in a GOTO

140

C Compiler Reference Manual
Compiler Error Messages

There was a GOTO LABEL but LABEL was never encountered within the
required scope. A GOTO cannot jump outside a function.

Unknown device type
A #DEVICE contained an unknown device. The center letters of a device are
always C regardless of the actual part in use. For example, use PIC16C74 not
PIC16RC74. Be sure the correct compiler is being used for the indicated device.
See #DEVICE for more information.

Unknown keyword in #FUSES
Check the keyword spelling against the description under #FUSES.

Unknown type
The specified type is used but not defined in the program. Check the spelling.

USE parameter invalid
One of the parameters to a USE library is not valid for the current environment.

USE parameter value is out of range
One of the values for a parameter to the USE library is not valid for the current
environment.

141

C Compiler Reference Manual
Common Questions and Answers

COMMON QUESTIONS AND ANSWERS

Questions
How does one map a variable to an I/O port? 143
Why does a program work with standard I/O but not with fast I/O? 145
Why does the generated code that uses BIT variables look so ugly? 146
Why is the RS-232 not working right? 147
How can I use two or more RS-232 ports on one PIC? 149
How does the PIC connect to a PC? 150
Why do I get an OUT OF ROM error when there seems to be ROM left? 151
What can be done about an OUT OF RAM error? 152
Why does the .LST file look out of order? 153
How is the TIMER0 interrupt used to perform an event at some rate? 154
How does the compiler handle converting between bytes and words? 155
How does the compiler determine TRUE and FALSE on expressions? 156
What are the restrictions on function calls from an interrupt function? 157
Why does the compiler use the obsolete TRIS? 158
How does the PIC connect to an I2C device? 158
Instead of 800, the compiler calls 0. Why? 159
Instead of A0, the compiler is using register 20. Why? 159
How do I directly read/write to internal registers? 160
How can a constant data table be placed in ROM? 161
How can the RB interrupt be used to detect a button press? 162
What is the format of floating point numbers? 163
Why does the compiler show less RAM than there really is? 164
What is an easy way for two or more PICs to communicate? 165
How do I write variables to EEPROM that are not a byte? 166
How do I get getc() to timeout after a specified time? 167
How do I put a NOP at location 0 for the ICD? 169
How do I do a printf to a string? 169
How do I make a pointer to a function? 170
How can I pass a variable to functions like OUTPUT_HIGH()? 168
How much time do math operations take? 171
How are type conversions handled? 172

142

C Compiler Reference Manual
Common Questions and Answers

How does one map a variable to an I/O port?

Two methods are as follows:

#byte PORTB = 6
#define ALL_OUT 0

#define ALL_IN 0xff
main() {
 int i;

 set_tris_b(ALL_OUT);
 PORTB = 0;// Set all pins low
 for(i=0;i<=127;++i) // Quickly count from 0 to 127
 PORTB=i; // on the I/O port pin
 set_tris_b(ALL_IN);
 i = PORTB; // i now contains the portb value.
}

Remember when using the #BYTE, the created variable is treated like memory.
You must maintain the tri-state control registers yourself via the SET_TRIS_X
function. Following is an example of placing a structure on an I/O port:

struct port_b_layout
 {int data : 4;
 int rw : 1;
 int cd : 1;
 int enable : 1;
 int reset : 1; };
struct port_b_layout port_b;
#byte port_b = 6
struct port_b_layout const INIT_1 = {0, 1,1,1,1};
struct port_b_layout const INIT_2 = {3, 1,1,1,0};
struct port_b_layout const INIT_3 = {0, 0,0,0,0};
struct port_b_layout const FOR_SEND = {0,0,0,0,0};
 // All outputs
struct port_b_layout const FOR_READ = {15,0,0,0,0};
 // Data is an input
main() {
 int x;
 set_tris_b((int)FOR_SEND); // The constant
 // structure is
 // treated like
 // a byte and
 // is used to
 // set the data
 // direction
 port_b = INIT_1;
 delay_us(25);

port_b = INIT_2; // These constant structures

143

C Compiler Reference Manual
Common Questions and Answers

delay_us(25); // are used to set all fields
 port_b = INIT_3; // on the port with a single
 // command

 set_tris_b((int)FOR_READ);
 port_b.rw=0;
 // Here the individual
 port_b.cd=1; // fields are accessed
 port_b.enable=0; // independently.
 x = port_b.data;
 port_b.enable=0
}

144

C Compiler Reference Manual
Common Questions and Answers

Why does a program work with standard I/O but not with fast
I/O?

First remember that the fast I/O mode does nothing except the I/O. The
programmer must set the tri-state registers to establish the direction via
SET_TRIS_X(). The SET_TRIS_X() function will set the direction for the entire
port (8 bits). A bit set to 1 indicates input and 0 is an output. For example, to set
all pins of port B to outputs except the B7 pin, use the following:

set_tris_b(0x80);

Secondly, be aware that fast I/O can be very fast. Consider the following code:

output_high(PIN_B0);
output_low(PIN_B1);

delay_cycles(1); //Delay one instruction time

This will be implemented with two assembly instructions (BSF 6,0 and BCF 6,1).
The microprocessor implements the BSF and BCF as a read of the entire port, a
modify of the bit and a write back of the port. In this example, at the time that the
BCF is executed, the B0 pin may not have yet stabilized. The previous state of
pin B0 will be seen and written to the port with the B1 change. In effect, it will
appear as if the high to B0 never happened. With standard and fixed I/O, this is
not usually a problem since enough extra instructions are inserted to avoid a
problem. The time it takes for a pin to stabilize depends on the load placed on
the pin. The following is an example of a fix to the above problem:

output_high(PIN_B0);

output_high(PIN_B1);

The delay_cycles(1) will simply insert one NOP between the two I/O commands.
At 20mhz a NOP is 0.2 us.

145

C Compiler Reference Manual
Common Questions and Answers

Why does the generated code that uses BIT variables look so
ugly?

Bit variables (SHORT INT) are great for both saving RAM and for speed but only
when used correctly. Consider the following:

int x,y;
short int bx, by;
x=5;
y=10;
bx=0;
by=1;
x = (x+by)-bx*by+(y-by);

When used with arithmetic operators (+ and - above), the BX and BY will be first
converted to a byte internally: this is ugly. If this must be done, you can save
space and time by first converting the bit to byte only once and saving the
compiler from doing it again and again. For example:

z=by;
x = (x+z)-bx*z+(y-z);

Better, would be to avoid using bits in these kinds of expressions. Almost
always, they can be rewritten more efficiently using IF statements to test the bit
variables. You can make assignments to bits, use them in IFs and use the &&, ||
and ! operators very efficiently. The following will be implemented with great
efficiency:

if (by || (bx && bz) || !bw)
z=0;

Remember to use ! not ~, && not & and || not | with bits. Note that the INPUT(...)
function and some other built-in functions that return a bit follow the same rules.

For example do the following:

if (!input(PIN_B0))
NOT:

if(input(PIN_B0) == 0)

Both will work but the first one is implemented with one bit test instruction and the
second one does a conversion to a byte and a comparison to zero.

146

C Compiler Reference Manual
Common Questions and Answers

Why is the RS-232 not working right?

1. The PIC is Sending Garbage Characters.

A. Check the clock on the target for accuracy. Crystals are usually not a problem
but RC oscillators can cause trouble with RS-232. Make sure the #USE DELAY
matches the actual clock frequency.

B. Make sure the PC (or other host) has the correct baud and parity setting.

C. Check the level conversion. When using a driver/receiver chip, such as the
MAX 232, do not use INVERT when making direct connections with resistors
and/or diodes. You probably need the INVERT option in the #USE RS232.

D. Remember that PUTC(6) will send an ASCII 6 to the PC and this may not be a
visible character. PUTC('A') will output a visible character A.

2. The PIC is Receiving Garbage Characters.

A. Check all of the above.

3. Nothing is Being Sent.

A. Make sure that the tri-state registers are correct. The mode (standard, fast,
fixed) used will be whatever the mode is when the #USE RS232 is encountered.
Staying with the default STANDARD mode is safest.

B. Use the following main() for testing:

main() {
 while(TRUE)
 putc('U');
}

Check the XMIT pin for activity with a logic probe, scope or whatever you can. If
you can look at it with a scope, check the bit time (it should be 1/BAUD). Check
again after the level converter.

4. Nothing is being received.

First be sure the PIC can send data. Use the following main() for testing:

main() {
 printf("start");
 while(TRUE)
 putc(getc()+1);

147

C Compiler Reference Manual
Common Questions and Answers

}

When connected to a PC typing A should show B echoed back.
If nothing is seen coming back (except the initial "Start"), check the RCV pin on
the PIC with a logic probe. You should see a HIGH state and when a key is
pressed at the PC, a pulse to low. Trace back to find out where it is lost.

5. The PIC is always receiving data via RS-232 even when none is being sent.

A. Check that the INVERT option in the USE RS232 is right for your level
converter. If the RCV pin is HIGH when no data is being sent, you should NOT
use INVERT. If the pin is low when no data is being sent, you need to use
INVERT.

B. Check that the pin is stable at HIGH or LOW in accordance with A above
when no data is being sent.

C. When using PORT A with a device that supports the SETUP_PORT_A
function make sure the port is set to digital inputs. This is not the default. The
same is true for devices with a comparator on PORT A.

6. Compiler reports INVALID BAUD RATE.

A. When using a software RS232 (no built-in UART), the clock cannot be really
slow when fast baud rates are used and cannot be really fast with slow baud
rates. Experiment with the clock/baud rate values to find your limits.

B. When using the built-in UART, the requested baud rate must be within 3% of
a rate that can be achieved for no error to occur. Some parts have internal bugs
with BRGH set to 1 and the compiler will not use this unless you specify
BRGH1OK in the #USE RS232 directive.

148

C Compiler Reference Manual
Common Questions and Answers

How can I use two or more RS-232 ports on one PIC?

The #USE RS232 (and I2C for that matter) is in effect for GETC, PUTC, PRINTF
and KBHIT functions encountered until another #USE RS232 is found.

The #USE RS232 is not an executable line. It works much like a #DEFINE.

The following is an example program to read from one RS-232 port (A) and echo
the data to both the first RS-232 port (A) and a second RS-232 port (B).

#USE RS232(BAUD=9600, XMIT=PIN_B0, RCV=PIN_B1)
void put_to_a(char c) {
 put(c);
}
char get_from_a() {
 return(getc()); }
#USE RS232(BAUD=9600, XMIT=PIN_B2,RCV=PIN_B3)
void put_to_b(char b) {
 putc(c);
}
main() {
 char c;
 put_to_a("Online\n\r");
 put_to_b("Online\n\r");
 while(TRUE) {
 c=get_from_a();
 put_to_b(c);
 put_to_a(c);
 }
}

The following will do the same thing but is less readable:

main() {
char c;
#USE RS232(BAUD=9600, XMIT=PIN_B0, RCV=PIN_B1)
 printf("Online\n\r");
#USE RS232(BAUD=9600, #useXMIT=PIN_B2,RCV=PIN_B3)
 printf("Online\n\r");
 while(TRUE) {
#USE RS232(BAUD=9600, XMIT=PIN_B0, RCV=PIN_B1)
 c=getc();
#USE RS232(BAUD=9600, XMIT=PIN_B2,RCV=PIN_B3)
 putc(c);
#USE RS232(BAUD=9600, XMIT=PIN_B0, RCV=PIN_B1)
 putc(c);
}

149

C Compiler Reference Manual
Common Questions and Answers

How does the PIC connect to a PC?

A level converter should be used to convert the TTL (0-5V_ levels that the PIC
operates with to the RS-232 voltages (+/- 3-12V) used by the PIC. The following
is a popular configuration using the MAX232 chip as a level converter.

150

C Compiler Reference Manual
Common Questions and Answers

Why do I get an OUT OF ROM error when there seems to be
ROM left?

The OUT OF ROM error can occur when a function will not fit into a segment. A
function and all of its inline functions must fit into one hardware page.
Sometimes decisions are made automatically by the linker. This will cause too
many functions to be INLINE for a function to fit into a segment. To correct the
problem, the user may need to use #SEPARATE to force a function to be
separate. Consider the following example:

 TEST.C

MAIN ?614 RAM=5
 DELAY_MS 0/19 RAM=1
 READ_DATA (INLINE) RAM=5
 PROCESS_DATA (INLINE) RAM=11
 OUTPUT_DATA (INLINE) RAM=6
 PUTHEX (INLINE) RAM=2

PUTHEX1 0/18 RAM=2
 @PUTCHAR_9600_52_49 0/30 RAM=2
 @PUTCHAR_9600_52_49 0/30 RAM=2
PUTHEX1 0/18 RAM=2
 @PUTCHAR_9600_52_49 0/30 RAM=2
 @PUTCHAR_9600_52_49 0/30 RAM=2

This example shows a main program with several INLINE functions that it calls.
The resulting size of MAIN() is 614 locations and this will not fit into a 512
location page in the ’56 device. The linker will put a ? in for the segment number
since it would not fit in any segment. Note that the x/y notation is the page
number (x) and number of locations (y). As a general rule, the linker will INLINE
functions called only once to save stack space and in this program caused the
function to get too large. The solution in this example will be to put a
#SEPARATE before the declaration for PROCESS_DATA or maybe one of the
other big functions called by MAIN(). The result might look like the following:

 TEST.C

MAIN ?406 RAM=5
 DELAY_MS 0/19 RAM=1
 READ_DATA (INLINE) RAM=5
 PROCESS_DATA (INLINE) RAM=11
 OUTPUT_DATA (INLINE) RAM=6
 PUTHEX (INLINE) RAM=2

PUTHEX1 0/18 RAM=2
 @PUTCHAR_9600_52_49 0/30 RAM=2
 @PUTCHAR_9600_52_49 0/30 RAM=2
PUTHEX1 0/18 RAM=2
 @PUTCHAR_9600_52_49 0/30 RAM=2
 @PUTCHAR_9600_52_49 0/30 RAM=2

151

C Compiler Reference Manual
Common Questions and Answers

What can be done about an OUT OF RAM error?

The compiler makes every effort to optimize usage of RAM. Understanding the
RAM allocation can be a help in designing the program structure. The best re-
use of RAM is accomplished when local variables are used with lots of functions.
RAM is re-used between functions not active at the same time. See the NOT
ENOUGH RAM error message in this manual for a more detailed example.

RAM is also used for expression evaluation when the expression is complex.
The more complex the expression, the more scratch RAM locations the compiler
will need to allocate to that expression. The RAM allocated is reserved during
the execution of the entire function but may be re-used between expressions
within the function. The total RAM required for a function is the sum of the
parameters, the local variables and the largest number of scratch locations
required for any expression within the function. The RAM required for a function
is shown in the call tree after the RAM=. The RAM stays used when the function
calls another function and new RAM is allocated for the new function. However
when a function RETURNS the RAM may be re-used by another function called
by the parent. Sequential calls to functions each with their own local variables is
very efficient use of RAM as opposed to a large function with local variables
declared for the entire process at once.

Be sure to use SHORT INT (1 bit) variables whenever possible for flags and
other boolean variables. The compiler can pack eight such variables into one
byte location. This is done automatically by the compiler whenever you use
SHORT INT. The code size and ROM size will be smaller.

Finally, consider an external memory device to hold data not required frequently.
An external 8 pin EEPROM or SRAM can be connected to the PIC with just 2
wires and provide a great deal of additional storage capability. The compiler
package includes example drivers for these devices. The primary drawback is a
slower access time to read and write the data. The SRAM will have fast read
and write with memory being lost when power fails. The EEPROM will have a
very long write cycle, but can retain the data when power is lost.

152

C Compiler Reference Manual
Common Questions and Answers

Why does the .LST file look out of order?

The list file is produced to show the assembly code created for the C source
code. Each C source line has the corresponding assembly lines under it to show
the compiler’s work. The following three special cases make the .LST file look
strange to the first time viewer. Understanding how the compiler is working in
these special cases will make the .LST file appear quite normal and very useful.

1. Stray code near the top of the program is sometimes under what looks like a
non-executable source line.

Some of the code generated by the compiler does not correspond to any
particular source line. The compiler will put this code either near the top of the
program or sometimes under a #USE that caused subroutines to be generated.

2. The addresses are out of order.

The compiler will create the .LST file in the order of the C source code. The
linker has re-arranged the code to properly fit the functions into the best code
pages and the best half of a code page. The resulting code is not in source
order. Whenever the compiler has a discontinuity in the .LST file, it will put a *
line in the file. This is most often seen between functions and in places where
INLINE functions are called. In the case of a INLINE function, the addresses will
continue in order up where the source for the INLINE function is located.

3. The compiler has gone insane and generated the same instruction over and
over.

For Example:

...........A=0;
03F: CLRF 15
*
46: CLRF 15
*
051: CLRF 15
*
113: CLRF 15

This effect is seen when the function is an INLINE function and is called from
more than one place. In the above case, the A=0 line is in a INLINE function
called in four places. Each place it is called from gets a new copy of the code.
Each instance of the code is shown along with the original source line, and the
result may look unusual until the addresses and the * are noticed.

153

C Compiler Reference Manual
Common Questions and Answers

How is the TIMER0 interrupt used to perform an event at some
rate?

#include <16Cxx.H>

#INT_RTCC

 if(--high_count==0) {

 delay_us(5);

main() {

 set_rtcc(0);

The following is generic code used to issue a quick pulse at a fixed rate:

#use Delay(clock=15000000)
#define HIGH_START 114
byte seconds, high_count;

clock_isr() {

 output_high(PIN_B0);

 output_low(PIN_B0);
 high_count=HIGH_START;
 }
}

 high_count=HIGH_START;

 setup_counters(RTCC_INTERNAL, RTCC_DIV_128);
 enable_interrupts(RTCC_ZERO);
 enable_interrupts(GLOBAL);
 while(TRUE);
}

In this program, the pulse will happen about once a second. The math is as
follows:

The timer is incremented at (CLOCK/4)/RTCC_DIV.

In this example, the timer is incremented (15000000/4)/128 or 29297 times a
second (34us).

The interrupt happens every 256 increments.

In this example, the interrupt happens 29297/256 or 114 times a second.

The interrupt function decrements a counter (HIGH_START times) until it is zero,
then issues the pulse and resets the counter.

In this example, HIGH_START is 114 so the pulse happens once a second.

If HIGH_START were 57, the pulse would be about twice a second.

154

C Compiler Reference Manual
Common Questions and Answers

How does the compiler handle converting between bytes and
words?

In an assignment such as:

bytevar = wordvar;

The most significant BYTE is lost. This is the same result as:

bytevar = wordvar & 0xff;

The following will yield just the most significant BYTE:

For Example:

bytevar2 = 0x04;

bytevar = wordvar >> 8;

Any arithmetic or relational expression involving both bytes and words will
perform word operations, and treat the bytes as words with the top byte 0. For
example:

wordvar= 0x1234;
bytevar= 0x34;
if(wordvar==bytevar) //will be FALSE

Any arithmetic operations that only involve bytes will yield a byte result even
when assigned to word.

bytevar1 = 0x80;

wordvar = bytevar1 * bytevar2;
//wordvar will be 0

However, typecasting may be used to force word arithmetic:

wordvar = (long) bytevar1 * (long) bytevar2;
//wordvar will be 0x200

155

C Compiler Reference Manual
Common Questions and Answers

How does the compiler determine TRUE and FALSE on
expressions?

When relational expressions are assigned to variables, the result is always 0 or
1.

For Example:

bytevar = 5>0; //bytevar will be 1
bytevar = 0>5; //bytevar will be 0

The same is true when relation operators are used in expressions.

For Example:

bytevar = (x>y)*4;

is the same as:

if(x>y)
 bytevar=4;

 bytevar=0;
else

SHORT INTs (bit variables) are treated the same as relational expressions.
They evaluate to 0 or 1.

When expressions are converted to relational expressions or SHORT INTs, the
result will be FALSE (or 0) when the expression is 0, otherwise the result is
TRUE (or 1).

For Example:

bytevar = 54;
bitvar = bytevar; //bitvar will be 1 (bytevar ! = O)

if(bytevar) //will be TRUE
bytevar = 0;
bitvar = bytevar; //bitvar will be 0

156

C Compiler Reference Manual
Common Questions and Answers

What are the restrictions on function calls from an interrupt
function?

Whenever interrupts are used, the programmer MUST ensure there will be
enough stack space. Ensure the size of the stack required by the interrupt plus
the size of the stack already used by main() wherever interrupts are enabled is
less than 9. This can be seen at the top of the list file.

The compiler does not permit recursive calls to functions because the RISC
instruction set does not provide an efficient means to implement a traditional C
stack. All RAM locations required for a given function are allocated to a specific
address at link time in such a way that RAM is re-used between functions not
active at the same time. This prohibits recursion. For example, the main()
function may call a function A() and A() may call B() but B() may NOT call main(),
A() or B().

An interrupt may come in at any time, which poses a special problem. Consider
the interrupt function called ISR() that calls the function A() just like main() calls
A(). If the function A() is executing because main() called it and then the ISR()
activates, recursion will have happened.

In order to prevent the above problem, the compiler will "protect" the function call
to A() from main() by disabling all interrupts before the call to A() and restoring
the interrupt state after A() returns. In doing so, the compiler can allow complete
sharing of functions between the main program and the interrupt functions.

The programmer must take the following special considerations into account:
1. In the above example, interrupts will be disabled for the entire execution of A().
This will increase the interrupt latency depending on the execution time of A().

2. If the function A() changes the interrupts using ENABLE/DISABLE
_INTERRUPTS then the effect may be lost upon the return from A(), since the
entire INTCON register is saved before A() is called and restored afterwards.
Furthermore, if the global interrupt flag is enabled in A(), the program may
execute incorrectly.

3. A program should not depend on the interrupts being disabled in the above
situation. The compiler may NOT disable interrupts when the function or any
function it calls requires no local RAM.

4. The interrupts may be disabled, as described above for internal compiler
functions called by the same manor. For example, multiplication invoked by a
simple * may have this effect.

157

C Compiler Reference Manual
Common Questions and Answers

Why does the compiler use the obsolete TRIS?

The use of TRIS causes concern for some users. The Microchip data sheets
recommend not using TRIS instructions for upward compatibility. If you had
existing ASM code and it used TRIS then it would be more difficult to port to a
new Microchip part without TRIS. C does not have this problem, however; the
compiler has a device database that indicates specific characteristics for every
part. This includes information on whether the part has a TRIS and a list of
known problems with the part. The latter question is answered by looking at the
device errata.

CCS makes every attempt to add new devices and device revisions as the data
and errata sheets become available.

PCW users can edit the device database. If the use of TRIS is a concern, simply
change the database entry for your part and the compiler will not use it.

How does the PIC connect to an I2C device?
Two I/O lines are required for I2C. Both lines must have pullup registers. Often
the I2C device will have a H/W selectable address. The address set must match
the address in S/W. The example programs all assume the selectable address
lines are grounded.

158

C Compiler Reference Manual
Common Questions and Answers

Instead of 800, the compiler calls 0. Why?

The PIC ROM address field in opcodes is 8-10 Bits depending on the chip and
specific opcode. The rest of the address bits come from other sources. For
example, on the 174 chip to call address 800 from code in the first page you will
see:

BSF 0A,3
CALL 0

The call 0 is actually 800H since Bit 11 of the address (Bit 3 of PCLATH, Reg 0A)
has been set.

Instead of A0, the compiler is using register 20. Why?

The PIC RAM address field in opcodes is 5-7 bits long, depending on the chip.
The rest of the address field comes from the status register. For example, on the
74 chip to load A0 into W you will see:

BSF 3,5
MOVFW 20

Note that the BSF may not be immediately before the access since the compiler
optimizes out the redundant bank switches.

159

C Compiler Reference Manual
Common Questions and Answers

How do I directly read/write to internal registers?

A hardware register may be mapped to a C variable to allow direct read and write
capability to the register. The following is an example using the TIMER0 register:

#BYTE timer0 = 0x01
timer0= 128; //set timer0 to 128
while (timer0 ! = 200); // wait for timer0 to reach 200

Bits in registers may also be mapped as follows:

#BIT T0IF = 0x0B.2
.
.
.
while (!T0IF); //wait for timer0 interrupt

Registers may be indirectly addressed as shown in the following example:

printf ("enter address:");
a = gethex ();
printf ("\r\n value is %x\r\n", *a);

The compiler has a large set of built-in functions that will allow one to perform the
most common tasks with C function calls. When possible, it is best to use the
built-in functions rather than directly write to registers. Register locations change
between chips and some register operations require a specific algorithm to be
performed when a register value is changed. The compiler also takes into
account known chip errata in the implementation of the built-in functions. For
example, it is better to do set_tris_A(0); rather than *0x85=0;

160

C Compiler Reference Manual
Common Questions and Answers

How can a constant data table be placed in ROM?

The compiler has support for placing any data structure into the device ROM as a
constant read-only element. Since the ROM and RAM data paths are separate
in the PIC, there are restrictions on how the data is accessed. For example, to
place a 10 element BYTE array in ROM use:

BYTE CONST TABLE [10]= {9,8,7,6,5,4,3,2,1,0};

and to access the table use:

x = TABLE [i];
OR
x = TABLE [5];

BUT NOT

ptr = &TABLE [i];

In this case, a pointer to the table cannot be constructed.

Similar constructs using CONST may be used with any data type including
structures, longs and floats.

Note that in the implementation of the above table, a function call is made when
a table is accessed with a subscript that cannot be evaluated at compile time.

161

C Compiler Reference Manual
Common Questions and Answers

How can the RB interrupt be used to detect a button press?

The RB interrupt will happen when there is any change (input or output) on pins
B4-B7. There is only one interrupt and the PIC does not tell you which pin
changed. The programmer must determine the change based on the previously
known value of the port. Furthermore, a single button press may cause several
interrupts due to bounce in the switch. A debounce algorithm will need to be
used. The following is a simple example:

#int_rb
rb_isr () {
 byte changes;
 changes = last_b ^ port_b;
 last_b = port_b;
 if (bit_test(changes,4)&& !bit_test(last_b,4)){
 //b4 went low
 }
if (bit_test(changes,5)&& !bit_test (last_b,5)){
 //b5 went low
 }
 .
 .
 .
 delay-ms (100); //debounce
}

The delay=ms (100) is a quick and dirty debounce. In general, you will not want
to sit in an ISR for 100 MS to allow the switch to debounce. A more elegant
solution is to set a timer on the first interrupt and wait until the timer overflows.
Don’t process further changes on the pin.

162

C Compiler Reference Manual
Common Questions and Answers

What is the format of floating point numbers?

CCS uses the same format Microchip uses in the 14000 calibration constants.
PCW users have a utility PCONVERT that will provide easy conversion to/from
decimal, hex and float in a small window in Windows. See EX_FLOAT.C for a
good example of using floats or float types variables. The format is as follows:

BYTE 1 BYTE 2 BYTE 3 BYTE 4
Lowest
BYTE
in RAM

00

85 E6

Example Number
0 00 00 00
1 7F 00 00 00
-1 7F 80 00 00
10 82 20 00 00
100 85 47 00 00
123.45 48 66
123.45E20 C8 27 4E 53
123.45 E-20 43 36 2E 17

8 Bit
exponent
with bias
of 7F

Sign
Bit 23 Bit Mantisa

Lowest BYTE in RAM

163
LSB
MSB

C Compiler Reference Manual
Common Questions and Answers

Why does the compiler show less RAM than there really is?

Some devices make part of the RAM much more ineffective to access than the
standard RAM. In particular, the 509, 57, 66, 67,76 and 77 devices have this
problem.

By default, the compiler will not automatically allocate variables to the problem
RAM and, therefore, the RAM available will show a number smaller than
expected.

There are three ways to use this RAM:

1. Use #BYTE or #BIT to allocate a variable in this RAM. Do NOT create a
pointer to these variables.

Example:

#BYTE counter=0x30

2. Use Read_Bank and Write_Bank to access the RAM like an array. This works
well if you need to allocate an array in this RAM.

Example:

for(i=0;i<15;i++)

for(i=0;i<=15;i++)

 Write_Bank(1,i,getc());

 PUTC(Read_Bank(1,i));

3. For PCM users, you can switch to 16 bit pointers for full RAM access (This
takes more ROM). Add *=16 to the #DEVICE .

Example:

#DEVICE PIC16C77 *=16

164

C Compiler Reference Manual
Common Questions and Answers

What is an easy way for two or more PICs to communicate?

There are two example programs (EX_PBUSM.C and EX_PBUSR.C) that show
how to use a simple one-wire interface to transfer data between PICs. Slower
data can use pin B0 and the EXT interrupt. The built-in UART may be used for
high speed transfers. An RS232 driver chip may be used for long distance
operations. The RS485 as well as the high speed UART require 2 pins and
minor software changes. The following are some hardware configurations.

165

C Compiler Reference Manual
Common Questions and Answers

How do I write variables to EEPROM that are not a byte?

The following is an example of how to read and write a floating point number
from/to EEPROM. The same concept may be used for structures, arrays or any
other type.

• n is an offset into the eeprom.

• For example if the first float is at 0 the second

• For floats you must increment it by 4.

• one should be at 4 and the third at 8.

WRITE_FLOAT_EXT_EEPROM(long int n, float data) {
 int i;

 for (i = 0; i < 4; i++)
 write_ext_eeprom(i + n, *(&data + i)) ;
}

float READ_FLOAT_EXT_EEPROM(long int n) {
 int i;
 float data;

 for (i = 0; i < 4; i++)
 *(&data + i) = read_ext_eeprom(i + n);

 return(data);
}

166

C Compiler Reference Manual
Common Questions and Answers

How do I get getc() to timeout after a specified time?

GETC will always wait for the character to become available. The trick is to not
call getc() until a character is ready. This can be determined with kbhit().

The following is an example of how to time out of waiting for an RS232 character.

Note that without a hardware UART the delay_us should be less than a tenth of a
bit time (10 us at 9600 baud). With hardware you can make it up to 10 times the
bit time. (1000 us at 9600 baud). Use two counters if you need a timeout value
larger than 65535.

short timeout_error;

char timed_getc() {
 long timeout;

 timeout_error=FALSE;
 timeout=0;
 while(!kbhit&&(++timeout<50000)) // 1/2 second
 delay_us(10);
 if(kbhit())
 return(getc());
 else {
 timeout_error=TRUE;
 return(0);
 }
}

167

C Compiler Reference Manual
Common Questions and Answers

How can I pass a variable to functions like OUTPUT_HIGH()?

The pin argument for built in functions like OUTPUT_HIGH need to be known at
compile time so the compiler knows the port and bit to generate the correct code.

If your application needs to use a few different pins not known at compile time
consider:

switch(pin_to_use) {
 case PIN_B3 : output_high(PIN_B3); break;
 case PIN_B4 : output_high(PIN_B4); break;
 case PIN_B5 : output_high(PIN_B5); break;
 case PIN_A1 : output_high(PIN_A1); break;
 }

If you need to use any pin on a port use:

#byte portb = 6
#byte portb_tris = 0x86 // **

portb_tris &= ~(1<<bit_to_use); // **

portb |= (1<<bit_to_use); // bit_to_use is 0-7

If you need to use any pin on any port use:

*(pin_to_use/8|0x80) &= ~(1<<(pin_to_use&7)); // **

*(pin_to_use/8) |= (1<<(pin_to_use&7));

In all cases pin_to_use is the normal PIN_A0... defines.

** These lines are only required if you need to change the direction register
(TRIS).

168

C Compiler Reference Manual
Common Questions and Answers

How do I put a NOP at location 0 for the ICD?

The CCS compilers are fully compatible with Microchips ICD debugger using
MPLAB. In order to prepare a program for ICD debugging (NOP at location 0
and so on) you need to add a #DEVICE ICD=TRUE after your normal #DEIVCE.

For Example:

#INCLUDE <16F877.h>

#DEVICE ICD=TRUE

How do I do a printf to a string?

The following is an example of how to direct the output of a printf to a string. We
used the \f to indicate the start of the string.

This example shows how to put a floating point number in a string.

char string[20];
byte stringptr=0;

tostring(char c) {
 if(c=='\f')
 stringptr=0;
 else

 string[stringptr]=0;

 string[stringptr++]=c;

}

main() {
 float f;

 f=12.345;

 printf(tostring,"\f%6.3f",f);

}

169

C Compiler Reference Manual
Common Questions and Answers

How do I make a pointer to a function?

The compiler does not permit pointers to functions so that the compiler can know
at compile time the complete call tree. This is used to allocate memory for full
RAM re-use. Functions that could not be in execution at the same time will use
the same RAM locations. In addition since there is no data stack in the PIC,
function parameters are passed in a special way that requires knowledge at
compile time of what function is being called. Calling a function via a pointer will
prevent knowing both of these things at compile time. Users sometimes will want
function pointers to create a state machine. The following is an example of how
to do this without pointers:

enum tasks {taskA, taskB, taskC};

run_task(tasks task_to_run) {

 switch(task_to_run) {
 case taskA : taskA_main(); break;
 case taskB : taskB_main(); break;
 case taskC : taskC_main(); break;
 }

}

170

C Compiler Reference Manual
Common Questions and Answers

How much time does math operations take?

Unsigned 8 bit operations are quite fast and floating point is very slow. If
possible consider fixed point instead of floating point. For example instead of
"float cost_in_dollars;" do "long cost_in_cents;". For trig formulas consider a
lookup table instead of real time calculations (see EX_SINE.C for an example).
The following are some rough times on a 20 mhz, 14 bit PIC. Note times will
vary depending on memory banks used.

8 bit add <1 us
8 bit multiply 9 us
8 bit divide 20 us
16 bit add 2 us
16 bit multiply 48 us
16 bit divide 65 us
32 bit add 5 us
32 bit multiply 138 us
32 bit divide 162 us
float add 32 us
float multiply 147 us
float divide 274 us
exp() 1653 us
Ln() 2676 us
sin() 3535 us

171

C Compiler Reference Manual
Common Questions and Answers

How are type conversions handled?

The compiler provides automatic type conversions when an assignment is
performed. Some information may be lost if the destination can not properly
represent the source. For example: int8var = int16var; Causes the top byte of
int16var to be lost

Assigning a smaller signed expression to a larger signed variable will result in the
sign being maintained. For example a signed 8 bit int that is -1 when assigned to
a 16 bit signed variable is still -1.

Signed numbers that are negative when assigned to a unsigned number will
cause the 2's complement value to be assigned. For example assigning -1 to a
int8 will result in the int8 being 255. In this case the sign bit is not extended
(conversion to unsigned is done before conversion to more bits). This means the
-1 assigned to a 16 bit unsigned is still 255.

Likewise assigning a large unsigned number to a signed variable of the same
size or smaller will result in the value being distorted. For example assigning 255
to a signed int8 will result in -1.

The above assignment rules also apply to parameters passed to functions.

When a binary operator has operands of differing types then the lower order
operand is converted (using the above rules) to the higher. The order is as
follows:

• Float
• Signed 32 bit

• Signed 16 bit

• 1 bit

• Unsigned 32 bit

• Unsigned 16 bit
• Signed 8 bit
• Unsigned 8 bit

The result is then the same as the operands. Each operator in an expression is
evaluated independently. For example:

i32 = i16 - (i8 + i8)

The + operator is 8 bit, the result is converted to 16 bit after the addition and the -
is 16 bit, that result is converted to 32 bit and the assignment is done. Note that

172

C Compiler Reference Manual
Common Questions and Answers

if i8 is 200 and i16 is 400 then the result in i32 is 256. (200 plus 200 is 144 with a
8 bit +)

Explicit conversion may be done at any point with (type) inserted before the
expression to be converted. For example in the above the perhaps desired effect
may be achieved by doing:

i32 = i16 - ((long)i8 + i8)

In this case the first i8 is converted to 16 bit, then the add is a 16 bit add and the
second i8 is forced to 16 bit.

A common C programming error is to do something like:

i16 = i8 * 100;

When the intent was:

i16 = (long) i8 * 100;

Remember that with unsigned ints (the default for this compiler) the values are
never negative. For example 2-4 is 254 (in 8 bit). This means the following is an
endless loop since i is never less than 0:

int i;
for(i=100; i>=0; i--)

173

C Compiler Reference Manual
Example Programs

EXAMPLE PROGRAMS

EX_1920

Shows how to use an external 12 bit A/D converter

EX_ADMM

EX_CCPMP

A large number of example programs are included on the disk. The following is a
list of many of the programs and some of the key programs are re-printed on the
following pages. Most programs will work with any chip by just changing the
#INCLUDE line that includes the device information. All of the following
programs have wiring instructions at the beginning of the code in a comment
header. The SIO.EXE program included in the program directory may be used to
demonstrate the example programs. This program will use a PC COM port to
communicate with the target.

Generic header files are included for the standard PIC parts. These files are in
the DEVICES directory. The pins of the chip are defined in these files in the form
PIN_B2. It is recommended that for a given project, the file is copied to a project
header file and the PIN_xx defines be changed to match the actual hardware.
For example; LCDRW (matching the mnemonic on the schematic). Use the
generic include files by placing the following in your main .C file:
#include <16C74.H>

LIST OF COMPLETE EXAMPLE PROGRAMS (in the EXAMPLES directory)
EX_14KAD
An analog to digital program with calibration for the PIC14000

Uses a Dallas DS1920 button to read temperature

EX_8PIN
Demonstrates the use of 8 pin PICs with their special I/O requirements

EX_92LCD
Uses a PIC16C92x chip to directly drive LCD glass

EX_AD12

A/D Conversion example showing min and max analog readings

EX_CCP1S
Generates a precision pulse using the PIC CCP module

Uses the PIC CCP module to measure a pulse width

174

C Compiler Reference Manual
Example Programs

EX_COMP
Uses the analog comparator and voltage reference available on some PICs

EX_CRC
Calculates CRC on a message showing the fast and powerful bit operations

EX_CUST
Change the nature of the compiler using special preprocessor directives

EX_FIXED
Shows fixed point numbers

EX_DPOT
Controls an external digital POT

EX_DTMF
Generates DTMF tones

EX_ENCOD
Interfaces to an optical encoder to determine direction and speed

EX_EXPIO
Uses simple logic chips to add I/O ports to the PIC

EX_EXTEE

Reads and writes to an external EEPROM

EX_FLOAT
Shows how to use basic floating point

EX_FREQC
A 50 mhz frequency counter

EX_GLINT
Shows how to define a custom global interrupt hander for fast interrupts

EX_INTEE
Reads and writes to the PIC internal EEPROM

EX_LCDKB
Displays data to an LCD module and reads data fro keypad

175

C Compiler Reference Manual
Example Programs

EX_LCDTH
Shows current, min and max temperature on an LCD

EX_LED
Drives a two digit 7 segment LED

EX_LOAD
Serial boot loader program for chips like the 16F877

EX_MACRO
Shows how powerful advanced macros can be in C

EX_PATG

Shows how to use the B port change interrupt to detect pushbuttons

Interfaces to an external frequency synthesizer to tune a radio

EX_RMSDB

Generates 8 square waves of different frequencies

EX_PBUSM
Generic PIC to PIC message transfer program over one wire

EX_PBUSR
Implements a PIC to PIC shared RAM over one wire

EX_PBUTT

EX_PGEN
Generates pulses with period and duty switch selectable

EX_PLL

EX_PSP
Uses the PIC PSP to implement a printer parallel to serial converter

EX_PULSE
Measures a pulse width using timer0

EX_PWM
Uses the PIC CCP module to generate a pulse stream

EX_REACT
Times the reaction time of a relay closing using the CCP module

176

C Compiler Reference Manual
Example Programs

Calculates the RMS voltage and dB level of an AC signal

EX_STEP

Displays (via RS232) the temperature from a digital sensor

EX_RTC
Sets and reads an external Real Time Clock using RS232

EX_RTCLK
Sets and reads an external Real Time Clock using an LCD and keypad

EX_SINE
Generates a sine wave using a D/A converter

EX_SISR
Shows how to do RS232 serial interrupts

EX_SLAVE
Simulates an I2C serial EEPROM showing the PIC slave mode

EX_SPEED
Calculates the speed of an external object like a model car

EX_SPI
Communicates with a serial EEPROM using the H/W SPI module

EX_SQW
Simple Square wave generator

EX_SRAM
Reads and writes to an external serial RAM

Drives a stepper motor via RS232 commands and an analog input

EX_STR
Shows how to use basic C string handling functions

EX_STWT
A stop Watch program that shows how to user a timer interrupt

EX_TANK
Uses trig functions to calculate the liquid in an odd shaped tank

EX_TEMP

177

C Compiler Reference Manual
Example Programs

EX_TGETC

Serial EEPROM functions

Demonstrates how to timeout of waiting for RS232 data

EX_TONES
Shows how to generate tones by playing "Happy Birthday"

EX_TOUCH
Reads the serial number from a Dallas touch device

EX_USB
Implements a USB device on the PIC16C765

EX_VOICE
Self learning text to voice program

EX_WDT
Shows how to use the PIC watch dog timer

EX_X10
Communicates with a TW523 unit to read and send power line X10 codes

LIST OF INCLUDE FILES (in the DRIVERS directory)
14KCAL.C
Calibration functions for the PIC14000 A/D converter

2401.C
Serial EEPROM functions

2402.C

2404.C
Serial EEPROM functions

2408.C
Serial EEPROM functions

4128.C
Serial EEPROM functions

2416.C
Serial EEPROM functions

178

C Compiler Reference Manual
Example Programs

24256.C
Serial EEPROM functions

2432.C
Serial EEPROM functions

2465.C
Serial EEPROM functions

25160.C

Serial RAM functions

Serial EEPROM functions

25320.C
Serial EEPROM functions

25640.C
Serial EEPROM functions

25C080.C
Serial EEPROM functions

68HC68R1.C
Serial RAM functions

68HC68R2.C

74165.C
Expanded input functions

74595.C
Expanded output functions

9346.C
Serial EEPROM functions

9356.C
Serial EEPROM functions

9356SPI.C
Serial EEPROM functions (uses H/W SPI)

179

C Compiler Reference Manual
Example Programs

9366.C
Serial EEPROM functions

AD7715.C
A/D Converter functions

AD8400.C
Digital POT functions

Real time clock functions

Functions to read strings and numbers via RS232

KBD.C

AT25256.C
Serial EEPROM functions

CE51X.C
Functions to access the 12CE51x EEPROM

CE62X.C
Functions to access the 12CE62x EEPROM

CE67X.C
Functions to access the 12CE67x EEPROM

CTYPE.H
Definitions for various character handling functions

DS1302.C

DS1621.C
Temperature functions

DS1868.C
Digital POT functions

FLOATEE.C
Functions to read/write floats to an EEPROM

INPUT.C

Functions to read a keypad

LCD.C

180

C Compiler Reference Manual
Example Programs

LCD module functions

LOADER.C
A simple RS232 program loader

LTC1298.C
12 Bit A/D converter functions

MATH.H
Various standard trig functions

MAX517.C
D/A converter functions

MCP3208.C
A/D converter functions

STDIO.H

NJU6355.C
Real time clock functions

PCF8570.C
Serial RAM functions

Not much here - Provided for standard C compatibility

STDLIB.H
String to number functions

STRING.H
Various standard string functions

TONES.C
Functions to generate tones

TOUCH.C
Functions to read/write to Dallas touch devices

X10.C
Functions to read/write X10 codes

181

C Compiler Reference Manual
Example Programs

///
/// EX_SQW.C ///
/// This program displays a message over the RS-232 and ///
/// waits for any keypress to continue. The program ///
/// will then begin a 1khz square wave over I/O pin B0. ///
/// Change both delay_us to delay_ms to make the ///
/// frequency 1 hz. This will be more visible on ///
/// a LED. Configure the CCS prototype card as ///
/// follows: insert jumpers from 11 to 17, 12 to 18, ///
/// and 42 to 47. ///
///

#ifdef __PCB__

#else

#endif

#include <16C56.H>

#include <16C84.H>

#use delay(clock=20000000)
#use rs232(baud=9600, xmit=PIN_A3, rcv=PIN_A2)

main() {
 printf("Press any key to begin\n\r");
 getc();
 printf("1 khz signal activated\n\r");
 while (TRUE) {
 output_high (PIN_B0);
 delay_us(500);
 output_low(PIN_B0);
 delay_us(500);
 }
}

182

C Compiler Reference Manual
Example Programs

///
/// EX_STWT.C ///
/// This program uses the RTCC (timer0) and ///
/// interrupts to keep a real time seconds counter. ///
/// A simple stop watch function is then implemented. ///
/// Configure the CCS prototype card as follows, insert ///
/// jumpers from: 11 to 17 and 12 to 18. ///
///

#include <16C84.H>
#use delay (clock=20000000)
#use rs232(baud=9600, xmit=PIN_A3, rcv=PIN_A2_
#define INTS_PER_SECOND 76 //(20000000/(4*256*256))
byte seconds; //Number of interrupts left
 //before a second has elapsed

#int_rtcc //This function is called
clock_isr() { //every time the RTCC (timer0)
 //overflows (255->0)
 //For this program this is apx
 //76 times per second.

 if(--int_count==0) {
 ++seconds;
 int_count=INTS_PER_SECOND;

 }
}

main() {
 byte start;
 int_count=INTS_PER_SECOND;
 set_rtcc(0);
 setup_counters (RTCC_INTERNAL, RTCC_DIV_256);
 enable_interrupts (INT_RTCC);
 enable_interrupts(GLOBAL)
 do {
 printf ("Press any key to begin. \n\r");
 getc();
 start=seconds;
 printf("Press any key to stop. \n\r");
 getc();
 printf ("%u seconds. \n\r", seconds-start);
 } while (TRUE);
}

183

C Compiler Reference Manual
Example Programs

///
/// EX_INTEE.C ///
/// This program will read and write to the ’83 or ’84 ///
/// internal EEPROM. Configure the CCS prototype ///
/// card as follows: insert jumpers from 11 to 17 and ///
/// 12 to 18. ///
///

#include <16C84.H>

#use delay(clock-100000000)
#use rs232 (baud=9600, xmit=PIN_A3, rv+PIN_A2)

#include <HEX.C>

main () {
 byte i,j,address, value;

 do {
 printf("\r\n\nEEPROM: \r\n") //Displays contents
 for(i=0; i<3; ++i) { //entire EEPROM
 for (j=0; j<=15; ++j) { //in hex
 printf("%2x", read_eeprom(i+16+j));

 }
 printf("\n\r");
 }
 printf ("\r\nlocation to change: ");
 address= gethex();
 printf ("\r\nNew value: ");
 value=gethex();

 write_eeprom (address, value);
 } while (TRUE)
}

184

C Compiler Reference Manual
Example Programs

///
/// Library for a Microchip 93C56 configured for a x8 ///
/// init_ext_eeprom(); Call before the other ///
/// functions are used ///
/// ///
/// write_ext_eeprom(a,d); Write the byte d to the ///
/// address a ///
/// d=read_ext_eeprom (a); Read the byte d from the ///
/// address a. ///
/// ///
/// The main program may define eeprom_select, eeprom_di, ///
/// eeprom_do and eeprom_clk to override the defaults ///
/// below. ///
///

#ifndef EEPROM_SELECT

#define EEPROM_SELECT PIN_B7
#define EEPROM_CLK PIN_B6
#define EEPROM_DI PIN_B5
#define EEPROM_DO PIN_B4

#endif

#define EEPROM_ADDRESS byte
#define EEPROM_SIZE 256

void init_ext_eeprom () {
 byte cmd[2];
 byte i;

 output_low(EEPROM_DI);
 output_low(EEPROM_CLK);
 output_low(EEPROM_SELECT);

 cmd[0]=0x80;
 cmd[1]=0x9;

 for (i=1; i<=4; ++i)
 shift_left(cmd, 2,0);
 output_high (EEPROM_SELECT);
 for (i=1; i<=12; ++i) {
 output_bit(EEPROM_DI, shift_left(cmd, 2,0));
 output_high (EEPROM_CLK);
 output_low(EEPROM_CLK);
 }
 output_low(EEPROM_DI);
 output_low(EEPROM_SELECT);
}

185

C Compiler Reference Manual
Example Programs

void write_ext_eeprom (EEPROM_ADDRESS address, byte data) {
 byte cmd[3];
 byte i;

 cmd[0]=data;
 cmd[1]=address;
 cmd[2]=0xa;

 for(i=1;i<=4;++i)
 shift_left(cmd,3,0);
 output_high(EEPROM_SELECT);
 for(i=1;i<=20;++i) {
 output_bit (EEPROM_DI, shift_left (cmd,3,0));
 output_high (EEPROM_CLK);
 output_low(EEPROM_CLK);
 }
 output_low (EEPROM_DI);
 output_low (EEPROM_SELECT);
 delay_ms(11);
}

byte read_ext_eeprom(EEPROM_ADDRESS address) {
 byte cmd[3];
 byte i, data;

 cmd[0]=0;
 cmd[1]=address;
 cmd[2]=0xc;

 for(i=1;i<=4;++i)
 shift_left(cmd,3,0);
 output_high(EEPROM_SELECT);
 for(i=1;i<=20;++i) {
 output_bit (EEPROM_DI, shift_left (cmd,3,0));
 output_high (EEPROM_CLK);
 output_low(EEPROM_CLK);
 if (i>12)
 shift_left (&data, 1, input (EEPROM_DO));
 }
 output_low (EEPROM_SELECT);
 return(data);
}

186

C Compiler Reference Manual
Software License Agreement

SOFTWARE LICENSE AGREEMENT

By opening the software diskette package, you agree to abide by the following
provisions. If you choose not to agree with these provisions promptly return the
unopened package for a refund.

1. License- Custom Computer Services ("CCS") grants you a license to use the
software program ("Licensed Materials") on a single-user computer. Use of the
Licensed Materials on a network requires payment of additional fees.

2. Applications Software- Derivative programs you create using the Licensed
Materials identified as Applications Software, are not subject to this agreement.

3. Warranty- CCS warrants the media to be free from defects in material and
workmanship and that the software will substantially conform to the related
documentation for a period of thirty (30) days after the date of your purchase.
CCS does not warrant that the Licensed Materials will be free from error or will
meet your specific requirements.

4. Limitations- CCS makes no warranty or condition, either expressed or implied,
including but not limited to any implied warranties of merchantability and fitness
for a particular purpose, regarding the Licensed Materials.

Neither CCS nor any applicable licensor will be liable for an incidental or
consequential damages, including but not limited to lost profits.

5. Transfers- Licensee agrees not to transfer or export the Licensed Materials to
any country other than it was originally shipped to by CCS.

The Licensed Materials are copyrighted
© 1994, 2001 Custom Computer Services Incorporated
All Rights Reserved Worldwide
P.O. Box 2452
Brookfield, WI 53008

187

C Compiler Reference Manual
Index

Index

#ASM..20, 21
#BIT..23, 24
#BYTE..24, 25
#CASE..25
#DEFINE ..26
#DEVICE..27
#ELSE ..30, 31
#ENDASM..20, 21
#ENDIF...30, 31, 32
#ERROR ..28
#FUSES ...29
#ID Checksum..29
#ID Filename..29
#ID number ..29
#ID number, number, number..29, 30
#IF expr ..30
#IFDEF...31, 32
#IFNDEF ..31, 32
#INCLUDE..32
#INLINE..33
#INT_AD...34
#INT_ADOF ...33
#INT_BUSCOL...33
#INT_BUTTON...33
#INT_CCP1..33
#INT_CCP2..33
#INT_COMP...33
#INT_DEFAULT ...34, 35
#INT_EEPROM..33
#INT_EXT...33
#INT_EXT1 ..33
#INT_EXT2 ..33
#INT_GLOBAL ...35
#INT_I2C..33
#INT_LCD ..33
#INT_LOWVOLT..33
#INT_PSP ..33

188

C Compiler Reference Manual
Index

#INT_RB...33
#INT_RC ..33
#INT_RDA..33
#INT_RTCC ...33
#INT_SSP ..33
#INT_TBE...33
#INT_TIMER0 ..33
#INT_TIMER1 ..33
#INT_TIMER2 ..33
#INT_TIMER3 ..33
#INT_xxxx ..33
#LIST..35, 36
#LOCATE...36
#NOLIST ..36, 37
#OPT..37
#ORG ...37, 38
#PRAGMA..40
#PRIORITY ..40
#RESERVE ..41
#ROM...41, 42
#SEPARATE ..42
#TYPE..42, 43
#UNDEF...43
#USE I2C ..45
#USE RS232...46
#USE DELAY ...43, 44
#USE FAST_IO..44
#USE FIXED_IO ..44
#USE STANDARD_IO ...47
#ZERO_RAM ...48

_
_ _ DATE_ _...25
_ _ PCH _ _..39, 40
_ _DEVICE_ _..27
_ _PCB_ _..39
_ _PCM_ _ ...39

A
ABS ..61
ACOS ...61, 120
ASIN...61, 120
ATAN..61, 120

189

C Compiler Reference Manual
Index

ATOF..61
ATOI ATOL ..62
ATOI32...62

B
BIT_CLEAR..63
BIT_SET...63
BIT_TEST...64

C
C Compiler Reference Manual...1
C Statements and Expressions..54
CEIL ...65
Code Examples..182
Comment..54
Common Questions and Answers ...142
Compile Options...11
Compiler Error Messages ..131
COS..66, 120

D
Data Definition..49
Data Definitions..49
DELAY_CYCLES ...66
DELAY_MS ..66
DELAY_US ..67
Device Calibration Data ...5
Direct Device Programming ...4
Directories ..4
DISABLE_INTERRUPTS...68

E
ENABLE_INTERRUPTS..69
Example Programs...174
EXP ..69
Expressions..56, 58
EXT_INT_EDGE ..70

F
File Formats ...4
File Menu..7
FLOOR...70

190

C Compiler Reference Manual
Index

Function Definition ...52

G
GET_RTCC..71
GET_TIMER0...71
GET_TIMER1...71
GET_TIMER2...71
GET_TIMER3...71
GET_TIMERx...71
GETC ...72
GETCH...72
GETCHAR..72
GETS..73

H
How can a constant data table be placed in ROM?...161
How can I pass a variable to functions like OUTPUT_HIGH ?..........................168
How can I use two or more RS-232 ports on one PIC?.....................................149
How can the RB interrupt be used to detect a button press?162
How do I directly read/write to internal registers?..160
How do I do a printf to a string? ...169
How do I get getc to timeout after a specified time?...167
How do I make a pointer to a function? ...170
How do I put a NOP at location 0 for the ICD? ..169
How do I write variables to EEPROM that are not a byte?166
How does one map a variable to an I/O port? ...143
How does the compiler determine TRUE and FALSE on expressions?............156
How does the compiler handle converting between bytes and words?.............155
How does the PIC connect to a PC? ...150
How does the PIC connect to an I2C device? ...158
How is the TIMER0 interrupt used to perform an event at some rate?154

I
I2C_POLL...73
I2C_READ..74
I2C_START..75
I2C_STOP..75
I2C_WRITE ..76
INPUT...77
INPUT_A ..77
INPUT_B ..77
INPUT_C..77
INPUT_D..77

191

C Compiler Reference Manual
Index

INPUT_E ..77
INPUT_x...77
Installation ..2
Instead of 800 the compiler calls 0. Why? ...159
Instead of A0 the compiler is using register 20. Why?.....................................159
Invoking the Command Line Compiler...2
ISALNUM char ...79
ISALPHA ..79
ISAMOUNG..78
ISDIGIT ..79
ISLOWER...79
ISSPACE..79
ISUPPER..79
ISXDIGIT..79

K
KBHIT...80

L
LABS ..81
LCD_LOAD ..81
LCD_SYMBOL ...82
LOG..83
LOG10..83

M
MAKE8 ...84
MAKE16 ...8 5
MAKE32 ...85
MEMCPY..86
MEMSET..87
MPLAB Integration ...3

O
Options Menu...9
OUTPUT_A ..90
OUTPUT_B ..90
OUTPUT_BIT...87
OUTPUT_C..90
OUTPUT_D..90
OUTPUT_E ..90
OUTPUT_FLOAT...88

192

C Compiler Reference Manual
Index

OUTPUT_HIGH ...89
OUTPUT_LOW ..89
Overview ..1

P
PCB PCM and PCH Overview ..1
PCB..1
PCH ...1
PCM...1
PCW Editor C Features..9
PCW IDE..7
PCW Overview...1
PORT_B_PULLUPS ..91
POW...91
Pre-Processor Directives ...20
PRINTF ..92
Program Syntax ...54
Project Menu ..8
Project Wizard..18
PSP_INPUT_FULL ..93
PSP_OUTPUT_FULL ..93
PSP_OVERFLOW ...93
PUTC..94
PUTCHAR..94
PUTS..95

R
READ_ADC..95
READ_BANK ...96
READ_CALIBRATION ...97
READ_EEPROM..98
READ_PROGRAM_EEPROM...98
Reference Parameters ...53
RESET_CPU..99
RESTART_CAUSE..99
RESTART_WDT ..100
ROTATE_LEFT..101
ROTATE_RIGHT ...102

S
SET_ADC_CHANNEL ...102
SET_PWM1_DUTY..103
SET_PWM2_DUTY..103

193

C Compiler Reference Manual
Index

SET_RTCC ..104
SET_TIMER0 ...104
SET_TIMER1 ...104
SET_TIMER2 ...104
SET_TIMER3 ...104
SET_TRIS_A..105
SET_TRIS_B..105
SET_TRIS_C ...105
SET_TRIS_D ...105
SET_TRIS_E..105
SET_UART_SPEED ..106
SETUP_ADC mode..107
SETUP_ADC_PORTS ...107
SETUP_CCP1..108
SETUP_CCP2..108
SETUP_COMPARATOR ...109
SETUP_COUNTERS...110, 111
SETUP_LCD ..111
SETUP_PSP ..112
SETUP_SPI ...112
SETUP_TIMER_0 ..113, 114
SETUP_TIMER_1 ..114, 115
SETUP_TIMER_2 ..115
SETUP_TIMER_3 ..116
SETUP_VREF..116, 117
SETUP_WDT ...117
SHIFT_LEFT ..118
SHIFT_RIGHT..119
SIN ...120
SLEEP..121
Software License Agreement...187
SPI_DATA_IS_IN...121
SPI_READ..122
SPI_WRITE..122
SQRT ...123
STANDARD STRING FUNCTIONS...124
STRCAT...124
STRCHR ..124
STRCMP ..124
STRCPY...126, 127
STRICMP ...124
STRLEN ...124
STRLWR ..124

194

C Compiler Reference Manual
Index

STRNCMP..124
STRNCPY ..124
STRPBRK ..124
STRRCHR..124
STRSPN...124
STRSTR...124
STRTOK...125
SWAP...127

T
TAN ..120, 128
Technical Support ..2
TOLOWER ...128
Tools Menu ..13
TOUPPER..128

U
Utility Programs..5

V
View Menu..11

W
What are the restrictions on function calls from an interrupt function?..............157
What can be done about an OUT OF RAM error? ..152
What is an easy way for two or more PICs to communicate?165
What is the format of floating point numbers? ...163
Why do I get an OUT OF ROM error when there seems to be ROM left?151
Why does a program work with standard I/O but not with fast I/O?...................145
Why does the .LST file look out of order?..153
Why does the compiler show less RAM than there really is?164
Why does the compiler use the obsolete TRIS?..158
Why does the generated code that uses BIT variables look so ugly?146
Why is the RS-232 not working right?..147
WRITE_BANK..128
WRITE_EEPROM..129
WRITE_PROGRAM_EEPROM ...130

195

	OVERVIEW
	PCB, PCM and PCH Overview
	PCW Overview
	Technical Support
	Installation
	Invoking the Command Line Compiler
	MPLAB Integration
	Directories
	File Formats
	Direct Device Programming
	Device Calibration Data
	Utility Programs

	PCW IDE
	File Menu
	Project Menu
	Edit Menu
	Options Menu
	Compile Options
	View Menu
	Tools Menu
	Help Menu
	PCW Editor Keys
	Project Wizard

	PRE-PROCESSOR
	Pre-Processor Directives
	#ASM
	
	#ENDASM

	#BIT
	#BYTE
	#CASE
	_ _ DATE_ _
	#DEFINE
	#DEVICE
	_ _DEVICE_ _
	#ERROR
	#FUSES
	#ID
	#IF expr
	
	#ELSE
	#ELIF
	#ENDIF

	#IFDEF
	
	#IFNDEF
	#ELSE
	#ELIF
	#ENDIF

	#INCLUDE
	#INLINE
	#INT_xxxx
	#INT_DEFAULT
	#INT_GLOBAL
	#LIST
	#LOCATE
	#NOLIST
	#OPT
	#ORG
	_ _PCB_ _
	_ _PCM_ _
	_ _ PCH _ _
	#PRAGMA
	#PRIORITY
	#RESERVE
	#ROM
	#SEPARATE
	#TYPE
	#UNDEF
	#USE DELAY
	#USE FAST_IO
	#USE FIXED_IO
	#USE I2C
	#USE RS232
	#USE STANDARD_IO
	#ZERO_RAM

	DATA DEFINITIONS
	Data Types

	FUNCTION DEFINITION
	Function Definition
	Reference Parameters

	C STATEMENTS AND EXPRESSIONS
	Program Syntax
	Comment
	Statements
	Expressions
	Operators
	Operator Precedence

	BUILT-IN FUNCTIONS
	ABS()
	ACOS()
	ASIN()
	ATAN()
	ATOF
	ATOI()
	ATOL()
	ATOI32()
	BIT_CLEAR()
	BIT_SET()
	BIT_TEST()
	CEIL()
	COS()
	DELAY_CYCLES()
	DELAY_MS()
	DELAY_US()
	DISABLE_INTERRUPTS()
	ENABLE_INTERRUPTS()
	EXP()
	EXT_INT_EDGE()
	FLOOR()
	GET_TIMERx()
	GETC()
	
	GETCH()
	GETCHAR()

	GETS()
	I2C_POLL()
	I2C_READ()
	I2C_START()
	I2C_STOP()
	I2C_WRITE()
	INPUT()
	INPUT_x()
	ISAMOUNG()
	ISALNUM(char)
	
	ISALPHA(char)
	ISDIGIT(char)
	ISLOWER(char)
	ISSPACE(char)
	ISUPPER(char)
	ISXDIGIT(char)

	KBHIT()
	LABS()
	LCD_LOAD()
	LCD_SYMBOL()
	LOG()
	LOG10()
	MAKE8()
	MAKE16()
	MAKE32()
	MEMCPY()
	MEMSET()
	OUTPUT_BIT()
	OUTPUT_FLOAT()
	OUTPUT_HIGH()
	OUTPUT_LOW()
	OUTPUT_A()
	
	OUTPUT_B()
	OUTPUT_C()
	OUTPUT_D()
	OUTPUT_E()

	PORT_B_PULLUPS()
	POW()
	PRINTF()
	PSP_OUTPUT_FULL()
	
	PSP_INPUT_FULL()
	PSP_OVERFLOW()

	PUTC()
	
	PUTCHAR()

	PUTS()
	READ_ADC()
	READ_BANK()
	READ_CALIBRATION()
	READ_EEPROM()
	READ_PROGRAM_EEPROM ()
	RESET_CPU()
	RESTART_CAUSE()
	RESTART_WDT()
	ROTATE_LEFT()
	ROTATE_RIGHT()
	SET_ADC_CHANNEL()
	SET_PWM1_DUTY()
	
	SET_PWM2_DUTY()

	SET_RTCC()
	
	SET_TIMER0()
	SET_TIMER1()
	SET_TIMER2()
	SET_TIMER3()

	SET_TRIS_A()
	
	SET_TRIS_B()
	SET_TRIS_C()
	SET_TRIS_D()
	SET_TRIS_E()

	SET_UART_SPEED()
	SETUP_ADC(mode)
	SETUP_ADC_PORTS()
	SETUP_CCP1()
	
	SETUP_CCP2()

	SETUP_COMPARATOR()
	SETUP_COUNTERS()
	SETUP_LCD()
	SETUP_PSP()
	SETUP_SPI()
	SETUP_TIMER_0 ()
	SETUP_TIMER_1()
	SETUP_TIMER_2()
	SETUP_TIMER_3()
	SETUP_VREF()
	SETUP_WDT ()
	SHIFT_LEFT()
	SHIFT_RIGHT()
	SIN ()
	
	COS()
	TAN()
	ASIN()
	ACOS()
	ATAN()

	SLEEP()
	SPI_DATA_IS_IN()
	SPI_READ()
	SPI_WRITE()
	SQRT()
	STANDARD STRING FUNCTIONS
	
	STRCAT()
	STRCHR()
	STRRCHR()
	STRCMP()
	STRNCMP()
	STRICMP()
	STRNCPY()
	STRCSPN()
	STRSPN()
	STRLEN()
	STRLWR()
	STRPBRK()
	STRSTR()

	STRTOK()
	STRCPY()
	SWAP()
	TAN()
	TOLOWER()
	
	TOUPPER()

	WRITE_BANK()
	WRITE_EEPROM()
	WRITE_PROGRAM_EEPROM ()

	COMPILER ERROR MESSAGES
	COMMON QUESTIONS AND ANSWERS
	How does one map a variable to an I/O port?
	Why does a program work with standard I/O but not with fast I/O?
	Why does the generated code that uses BIT variables look so ugly?
	Why is the RS-232 not working right?
	How can I use two or more RS-232 ports on one PIC?
	How does the PIC connect to a PC?
	Why do I get an OUT OF ROM error when there seems to be ROM left?
	What can be done about an OUT OF RAM error?
	Why does the .LST file look out of order?
	How is the TIMER0 interrupt used to perform an event at some rate?
	How does the compiler handle converting between bytes and words?
	How does the compiler determine TRUE and FALSE on expressions?
	What are the restrictions on function calls from an interrupt function?
	Why does the compiler use the obsolete TRIS?
	How does the PIC connect to an I2C device?
	Instead of 800, the compiler calls 0. Why?
	Instead of A0, the compiler is using register 20. Why?
	How do I directly read/write to internal registers?
	How can a constant data table be placed in ROM?
	How can the RB interrupt be used to detect a button press?
	What is the format of floating point numbers?
	Why does the compiler show less RAM than there really is?
	What is an easy way for two or more PICs to communicate?
	How do I write variables to EEPROM that are not a byte?
	How do I get getc() to timeout after a specified time?
	How can I pass a variable to functions like OUTPUT_HIGH()?
	How do I put a NOP at location 0 for the ICD?
	How do I do a printf to a string?
	How do I make a pointer to a function?
	How much time does math operations take?
	How are type conversions handled?

	EXAMPLE PROGRAMS
	SOFTWARE LICENSE AGREEMENT

