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Abstract 
Uncertainty plays a central role in the handling of 
misunderstanding in dialog. People engaged in conversation 
typically take a sequence of actions to establish and 
maintain mutual understanding—a process referred to as 
grounding. We explore representations and control 
strategies for grounding utterances founded on performing 
explicit probabilistic inference about failures in 
communication. The methods are informed by 
psychological studies and founded on principles of decision 
making under uncertainty. We delineate four distinct levels 
of analysis for representing uncertainty and describe a 
computational framework for guiding action in an 
automated conversational system. We demonstrate how the 
framework captures grounding behavior by facilitating 
collaborative resolution of uncertainty as implemented in a 
spoken interactive dialog prototype called the Bayesian 
Receptionist. 

Introduction  

Researchers in linguistics, psychology, and artificial 
intelligence have argued that dialog may be best regarded 
as a type of joint activity (Clark, 1996; Cohen and 
Levesque, 1994; Grosz and Sidner, 1990; Suchman, 1987). 
In a joint activity, such as dancing, participants act in 
coordination with each other. Joint activities are goal-
centric and constrained in terms of setting, role, and, above 
all, on the kinds of allowable and appropriate contributions 
(Levinson, 1992). Participants derive explicitly or 
implicitly a common set of beliefs about the activity, and 
they drive towards mutual understanding of their intentions 
and actions—a process referred to as grounding (Clark & 
Brennan, 1991; Clark & Schaefer, 1987, 1989; Clark & 
Wilkes-Gibbs, 1990). 
 
Just as a dance is more than the sum of individual 
autonomous motions, a conversation is more than a 
structured sequence of utterances. People engaged in 
conversation elegantly coordinate the presentation and 
acceptance of utterances to achieve and confirm mutual 
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understanding. In the process, they frequently must make 
decisions under uncertainty. Such actions are targeted at 
reducing the risk of misunderstanding and contributing to 
the communication goals. Uncertainty is ubiquitous in 
dialog. As examples, a listener may be uncertain about the 
articulation of an utterance and a speaker may be uncertain 
about the attentiveness or comprehension of the listener. 
Although participants may tolerate a small degree of 
uncertainty, an excessive amount in a given context can 
lead to misunderstanding with all of its associated costs, 
including the premature termination of the joint activity 
and, ultimately, poor world actions. 
 
We have been pursuing within the Conversational 
Architectures project automated decision making methods 
that exploit representations at multiple levels of uncertainty 
about the ongoing status of a dialog. We believe that such 
methods promise to change in a qualitative manner the 
experience and effectiveness of communicating with a 
computational system. In this paper, we delineate four 
levels of analysis and describe representations, control 
structures, and inference strategies for managing 
uncertainty within and between levels. We illustrate the 
operation of the methods by reviewing sample interactions 
drawn from conversation between a user and a prototype 
system named the Bayesian Receptionist (Horvitz & Paek, 
1999). The Bayesian Receptionist employs Bayesian 
inference, natural language parsing, and speech recognition 
to guide dialog about tasks typically handled by front desk 
receptionists at the Microsoft corporate campus. We also 
discuss the role observational and psychological studies 
played in shaping the structure and setting the parameters 
of the system. 

Toward Robust Automated Grounding  

In human–computer dialog, the success of spoken 
interactive systems relies critically upon the abilities of a 
set of component technologies, including speech 
recognition, user modeling, text-to-speech, and natural 
language processing. To date, conversational systems built 
as assemblies of such components are fraught with 
multiple classes of failure. Failures such as speech 



recognition errors are simply thrown into a conversation 
and users are left with the task of deciphering them. Users 
are put in the position of relying on their conjectures about 
the nature of the specific failure and functioning of the 
overall architecture of the system. In stark contrast to the 
typical fragility of automated conversational systems, 
people manage quite well in the midst of uncertainties and 
imprecision that characterize human–human dialog. They 
display not only the ability to reason about key 
uncertainties and their costs, but also exploit strategies 
such as grounding for collaboratively resolving them. 
 
The computational framework we develop in this paper is 
motivated by the idea that a dialog system should be able 
to maintain a conversation without having the luxury of 
perfect speech recognition, language understanding, or 
precise models of the goals and attention of users. Such 
methods should be based on representations and inference 
machinery that can provide awareness and vigilance about 
potential failures by considering the uncertainties about 
possible sources of misunderstanding (Horvitz & Paek, 
1999). Interactions with such a system would proceed 
much in the way that a conversation might with 
interlocutors of impaired hearing or deficient language 
skills. Just as people employ communicative strategies like 
grounding to compensate for their impaired abilities, a 
dialog system should respond similarly, weighing the costs 
and benefits of taking particular kinds of compensatory 
measures.  
 
Our framework is built upon earlier research that has 
investigated how people collaboratively contribute to a 
conversation at successive levels of mutual understanding 
through grounding (Clark & Schaefer, 1987, 1989). While 
researchers have examined the relationship of these 
multiple levels with miscommunication (Brennan & 
Hulteen, 1995; Dillenbourg et al., 1996; Traum, 1994; 
Traum & Dillenbourg, 1996, 1998), relatively little work 
has focused on exploiting uncertainty; for example, by 
explicitly quantifying uncertainty in terms of probabilities 
at each level. The framework we present broadens the 
scope of previous models of grounding and referential 
expressions (Edmonds, 1993; Heeman, 1991; Heeman & 
Hirst, 1992; Hirst et al., 1994) by highlighting the efficacy 
of Bayesian networks and decision theory to reason about 
uncertainty before and during misunderstanding. 
Furthermore, the introduction of decision theory allows 
systems to use expected utility to provide fine-grain, 
context-sensitive guidance of compensatory measures, 
rather than relying solely on ad hoc procedures (Brennan, 
1998).  
 
We adapt the psychological theory of dialog as a joint 
activity as the central basis of human–computer 
interaction. We exploit data from psychological studies to 
shape the structure of Bayesian networks, set parameters, 
and consider actions in accordance with utilities elicited 
from users. 

We now delineate the distinct levels of analysis and 
describe the value of explicitly representing and 
manipulating information about these levels. Next, we 
introduce a decision-making framework for grounding 
utterances. Finally, we show examples of inference 
working in concert at multiple levels of uncertainty in the 
Bayesian Receptionist.  

Four Levels of Representation and Analysis 

Previous attempts to model dialog as a joint activity have 
focused primarily on the coordination of communication 
based on propositional beliefs (Cohen & Levesque, 1991; 
see Haddadi, 1995 for a review). This work has led to 
significant strides in the logical formalization of joint 
intentions. However, as researchers in grounding have 
noted, such work has overlooked critical aspects of joint 
coordination in dialog that span several different levels of 
mutual understanding. For example, speakers often repeat 
themselves if they believe they were not heard since, in a 
joint activity, it is not enough to just produce utterances; 
speakers must check that their utterances were attended to 
and that listeners are still engaged in the activity at hand. 
 
Taking inspiration from Clark (1996), speakers and 
listeners ground mutual understanding at four levels, as 
shown in Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Four levels of representation for inference and 
decision making under uncertainty. 
 
At the most basic level, which we denote as the channel 
level, a speaker S attempts to open a channel of 
communication by executing behavior β, such as an 
utterance or action, for listener L. However, S cannot get L 
to perceive β without coordination: L must be attending to 
and perceiving β  precisely as S is executing it. 
 
At the next higher level, the signal level, S presents β as a 
signal σ to L. Not all behaviors are meant to be signals, as 

S is presenting signal σ to L L is identifying signal σ from S

S is executing behavior β for L L is attending to behavior β from S
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for instance, the behavior of a listener scratching an itch 
during a conversation is irrelevant to the content of the 
interaction. Hence, S and L must coordinate on what S 
presents with what L identifies. 
 
The intention level is where interlocutors construe the 
semantic content of signals. To date, research on 
conversational systems has been focused almost entirely on 
the intention level. At this level, S signals some proposition 
p for L. What L recognizes to be the goal of S in signaling 
σ is how L will arrive at p. Note that the signal σ is 
different from the goal of S in using σ (e.g., in indirect 
speech acts). By focusing on the goals of S, the intention 
level treats the “speaker’s meaning” (Grice, 1957) as 
primary. S cannot convey p through σ without L 
recognizing that S intends to use σ. This again takes 
coordination. 
 
Finally, at the conversation level, S proposes some joint 
activity α which L considers and takes up. A proposal 
solicits an expected response defined by α. For example, in 
an indirect speech act such as “I have to go to the North 
Campus,” meaning “Please call a shuttle to the North 
Campus,” S is proposing an activity for S and L to carry 
out jointly—namely, that S gets L to call a shuttle. S cannot 
get L to engage in the activity without the coordinated 
participation of L in calling a shuttle. 
 
In short, all four levels require coordination and 
collaboration in order to achieve mutual understanding. 

Uncertainty and Costs 
Actions at all four levels are typically taken under 
uncertainty. For example, at the lowest level, interlocutors 
may be uncertain about channel fidelity; hence, they may 
search for physical signs of attentiveness such as eye gaze 
or head nodding. Indeed, listeners often display evidence 
of understanding through backchannels such as “uh huh” 
(Goodwin, 1986). 
 
Distinct actions under uncertainty are often associated with 
different costs. For example, if listeners are uncertain about 
channel fidelity, the cost of asking for a repeat may be 
slight compared to the cost of continuing along without 
grounding the recent utterances. With confirmations such 
as “Did you get that?,” the benefits of improving the 
likelihood of mutual understanding may outweigh the cost 
of asking, considering the larger expected cost associated 
with the potential need to retrace later on. Costs and 
uncertainty also vary according to the media of interaction 
(Clark & Brennan, 1991). 
 
A spoken dialog system needs to explicitly represent 
plausible actions, uncertainties, and costs if it is to recover 
from misunderstanding in a robust and natural manner. 
Previous approaches centering on the use of propositional 
logic to model joint action may work well for activities 
associated with deterministic goals. However, logical 

methods do not have the representational richness to 
support in an efficient manner the common situation where 
goals and their instantiations are uncertain. Furthermore, 
an analysis of goals at the intention level may fail due to 
problems at lower levels. Misunderstanding can cross all 
levels of mutual understanding. Rather than disregarding 
uncertainty, a dialog system should heed it in the way that 
humans appear to do, weighing the costs and benefits of 
taking particular actions in light of the uncertainty. 

A Decision-Making Framework for Dialog 

Unlike previous models of grounding that represent 
multiple levels, a decision-making framework allows for 
uncertainty about what level of misunderstanding a system 
may be encountering. Rather than having a problem at just 
one level, and taking action for that level only, a system 
may be uncertain about which level to investigate, as well 
as what the costs and benefits of exploring different actions 
at different levels may be. This problem is especially 
serious for modular dialog systems that integrate 
information from a wide variety of component 
technologies. 
 
We employ Bayesian reasoning and expected value 
decision making to identify ideal actions in dialog, taking 
into consideration uncertainties about communication 
fidelity and meaning, and the potentially varying costs and 
benefits of alternate actions taken under these 
uncertainties. We compute the likelihood of states of 
interest that we cannot observe directly with Bayesian 
networks. Bayesian networks have been used previously in 
several user modeling projects (e.g., see Conati et al., 
1997; Horvitz, 1997; Horvitz et al., 1998). Before detailing 
the representations and inference strategies we employ for 
resolving uncertainty at the four levels, we briefly discuss 
the control infrastructure of the framework. 

Control Infrastructure 
As shown in Figure 1, our approach can be viewed as two 
modules within a larger control subsystem. The 
Maintenance Module handles uncertainty about signal 
identification and channel fidelity. Consistent with the 
notion of upward completion, the Maintenance Module 
supports the Intention Module, which handles uncertainty 
about the recognition of user goals from signals. 
Surrounding both Modules is the Conversation Control 
subsystem which handles uncertainty about the status of 
the joint activity, Gricean maxims (Grice, 1975), common 
ground (a shared knowledge base for dialog), and other 
higher-level dialog events relevant to the joint activity. As 
represented by the arrows, the Conversation Control 
subsystem continually exchanges information with both 
modules and decides where to focus on grounding mutual 
understanding. The Conversation Control subsystem also 
adjusts costs or utilities based on records it keeps of 
conversation level observations, such as the number of 



questions asked and the number and recency of repair 
sequences engaged about speech recognition. 
 
As Clark (1996) points out, multiple levels of analysis 
form a ladder of co-temporal actions ordered with upward 
completion (Clark, 1996). Actions at a given level of 
dialog are completed bottom up. Furthermore, evidence 
that one level is complete is also evidence that all levels 
below it are complete. In other words, evidence flows 
downward.  
 
The control infrastructure provides an environment for 
exploring the value of intuitions behind upward the notions 
of completion and downward evidence. We are 
investigating procedures and policies for integrating the 
results of co-temporal inference at multiple levels. 

Representations and Inference Strategies 
Every component of the control infrastructure utilizes 
Bayesian network models to infer probabilities for decision 
making. The Bayesian networks allow the system to model 
dependencies between uncertainties, making it possible to 
reason about sources of misunderstanding in a structured 
way. Each module consists of at least one Decision-Based 
Transition Network (DTN): a finite automaton with 
transitional inputs set by decision-theoretic functions. 
While using a finite automaton to model grounding is not 
new, a DTN utilizes Bayesian inference and expected 
value computation to decide what transitions to follow to 
maximize mutual understanding and minimize 
collaborative effort. The structure of a DTN encodes 
conversational strategies for resolving uncertainty. 
 

Resolving Uncertainty 
Grounding in dialog is carried out in what sociolinguists 
call “adjacency pairs”: an ordered pair of utterances where 
the second pair part depends on the first by being 
“conditionally relevant,” i.e., relevant and expectable 
(Schegloff & Sacks, 1973). The prototype is a question and 
answer. Adjacency pairs are represented within the 
structure of a DTN. For example, in handling requests in 
the Intention Module, the conditionally relevant response is 
an uptake. However, if there is uncertainty about the 
request, it may be cost efficient to initiate an embedded 
“side sequence” (Jefferson, 1972) such as question to 
repair any misunderstanding. In a DTN, probabilities are 
provided with Bayesian networks. 
 
In the Intention Module, the primary uncertainty is the goal 
of the user. Such goals cannot be observed directly so the 
system infers a probability distribution over possible goals 
given all the linguistic and contextual, or nonlinguistic, 
evidence it has observed so far. We have presented details 
of the machinery employed in the Intention Module in 
earlier work (Horvitz & Paek, 1999). In the work, we 
hierarchically decompose the problem of discriminating 
goals into sets of subgoal discrimination problems at 
progressively greater levels of detail and represent the 

problem of discriminating among subgoals at different 
levels with level-specific Bayesian networks. The approach 
provides a means for referring to problems of 
understanding and information gathering at specific levels, 
and, thus, provides “handles” for grounding a user’s goals. 
In that work, an approximate decision-theoretic analysis is 
employed to make decisions about navigation in the 
hierarchy. If the probability of the most likely goal given 
the evidence, written p(Goal|E), does not exceed a 
probability threshold, determined by a cost—benefit 
analysis for progression to a conclusion or to a more 
detailed level of analysis (see Horvitz, 1999 for details on 
deriving a probability threshold), the system has to decide 
between two types of conversational strategies, encoded in 
the DTN as transitional inputs: Inquire_Goal, which 
explicitly asks the user to confirm the most likely goal, and 
Ask_Repair, which uses a side sequence to gather more 
information. Additional probability thresholds determine 
which transitional input is selected. If p(Goal|E) does not 
exceed a certain threshold, Inquire_Goal is ruled out. 
Furthermore, since failures to reach mutual understanding 
at the intention level can sometimes be the result of lower 
level problems, the system also considers uncertainty at the 
maintenance level in its decision making. In the 
Maintenance Module, a Bayesian network is used to obtain 
a probability distribution over three states: CHANNEL AND 
SIGNAL, CHANNEL AND NO SIGNAL, and NO CHANNEL. A 
Bayesian network for a Maintenance Module is displayed 
in Figure 2. The node MAINTENANCE STATUS represent the 
variables containing the three states at adjacent times. 
 
As before, probability thresholds are used to determine 
which instantiation of Ask_Repair to use. If p(Channel and 
Signal|E) exceeds another threshold, the system asks for an 
elaboration, which generally suggests an intention level 
misunderstanding but does not rule out a maintenance level 
cause such as misparsing.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. A portion of a temporal Bayesian network for 
reasoning about misunderstanding in the Maintenance 
Module. 



Another instantiation of Ask_Repair is asking for a repeat. 
If the most likely maintenance level state is CHANNEL AND 
NO SIGNAL, then the system will point out that it may be 
having a signal level problem while requesting a repeat. 
This acknowledges that resolving a misunderstanding is a 
collective process since the user is now in a better position 
to help resolve the problem. The principle underlying this 
cooperative behavior in dialog has been called the 
“principle of least collaborative effort (Clark & Wilkes-
Gibbs, 1986). For example, if a user asks the Bayesian 
Receptionist to hail a shuttle but the speech recognition 
only picks out a few words, the system can echo one of the 
words in a query frame such as “I’m sorry, [shuttle]? Can 
you repeat that?” where [shuttle] is just a slot for the word. 
This query tells the user that the speech recognition picked 
out some words but perhaps not enough to understand the 
utterance with a high enough level of confidence at the 
intention level. 
 
One last type of Ask_Repair utilizes the power of value of 
information (VOI) analysis to identify the best signals to 
observe in light of the inferred probabilities of different 
goals. To compute VOI, the system calculates for every 
signal, the expected utility of the best decision associated 
with each value the signal may take on. The analysis sums 
the expected utility for each value, weighted by the 
probabilities of observing different values should an 
observation be made (see Horvitz, Breese, & Henrion, 
1988 for background and details on computation of VOI). 
Once it recommends which signal to observe, a query 
frame for that signal is used. For example, if VOI 
recommends observing the word “shuttle,” the 
Receptionist may ask the user if the request has anything to 
do with getting a shuttle. This may be inappropriate at 
times so context-dependent costs are assigned to VOI 
recommendations, as will be discussed further in the next 
section.  
 
In the Intention Module, the transitional input Ask_Repair 
brings the DTN to a temporary state where, upon admitting 
the conditionally relevant second pair part, 
Repair_Admitted, the DTN moves back to its original 
state. There, the Receptionist performs inference again 
with additional information acquired from the side 
sequence. This process of continual refinement through 
grounding in adjacency pairs is an effective way of 
clearing up misunderstanding. 
 

Conversation Control 
The Conversation Control subsystem facilitates the sharing 
of evidence between Modules. Consistent with the notion 
of downward evidence, once a transitional input is selected 
in the Intention Module DTN, evidence is sent downwards 
to fix transitional inputs in the Maintenance Module, as 
shown in the arrow in Figure 1. For example, when the 
user provides Repair_Admitted to Ask_Repair, that fixes a 
transitional input in a Maintenance Module DTN 
specifying that the question asked was attended to by the 

user. If the dialog should continue and inference has to be 
performed on a maintenance level Bayesian model, a 
variable indicating that the user was attentive to the 
previous utterance gets instantiated. 
 
As stated previously, transitional inputs in a DTN are set 
by decision-theoretic functions. In some cases, that 
involves only fixed probability thresholds. In other cases, 
dynamically changing costs and benefits (as expressed in 
utilities) associated with taking a particular action needs to 
be evaluated. Since the Conversation Control subsystem 
keeps track of higher-level events, DTNs in both Modules 
submit utilities for proper alignment with dialog context 
and social factors. For example, in the Intention Module, 
the Conversation Control subsystem magnifies the cost of 
asking a question as the number of questions asked within 
the same adjacency pair increases. Hence, while the cost of 
asking one question may be slight, it rapidly increases 
(perhaps even exponentially) with the number of questions 
asked about the same request. We are currently exploring 
utility functions elicited from users in psychological 
studies for dynamically adjusting cost. 
 
The Conversation Control subsystem is also responsible 
for discerning when the joint activity has been terminated. 
It does so by using its own Bayesian network with a 
distribution over conversation level states such as 
ADVANCING ACTIVITY and UNEXPECTED TERMINATION. 

Observational and Psychological Studies 

To obtain priors and utilities for the Bayesian Receptionist 
we conducted observational and psychological studies of 
the receptionist domain. In a related paper (Horvitz & 
Paek, 1999), we elucidate how detailed interviews and 
videotapes of people interacting with three receptionists 
revealed a key set of variables and states relevant to the 
problem of diagnosing the goals of a user. Variables 
included not only linguistic signals, as in a parse of the 
initial utterance, but also visual cues, such as the 
appearance and trajectory of the user. Knowledge 
engineering techniques such as eliciting conditional 
probabilities from the domain experts—receptionists at the 
Microsoft corporate campus—assisted the assessment of 
prior distributions for these variables.  
 
Along with variables and their probability distributions, we 
have been collecting utilities that may be best represented 
as functions of context. For the Intention Module, we have 
identified three classes of costs matching three types of 
observable variables in the Bayesian networks: visual, 
conceptual, and term features. In recommending a state to 
observe through VOI, the system breaks down the analysis 
into the corresponding types and assigns an initial cost.  

• Visual features: For people, the cost of looking is 
negligible. For a dialog system, the cost reflects the 
amount of computational resources necessary to activate 
and control online visual subsystems. 



• Conceptual features: The natural language parser, 
NLPwin (Heidorn, 1999) extracts syntactic, logical, and 
semantic information from an utterance, which we 
classify as conceptual features. An example of a 
semantic feature for the noun “ride” is its association 
with transportation. To inquire about the concept of 
transportation with a user may be inappropriate so its 
initial cost is set high. 

• Term features: Term features are evocative sets of 
words and phrases, called metanyms (Heckerman and 
Horvitz, 1998), spotted in an utterance. The cost of 
asking about whether a particular word is related to the 
request of the user should be relatively lower than for 
conceptual features. 

After an initial cost is assigned to the three types of 
features, the Conversation Control subsystem adjusts the 
cost according to dialog context (based on collected utility 
functions) and combines it with the utilities of selecting 
various types of transitional inputs. 
 
Different types and numbers of questions employed in a 
process of grounding result in different degrees of irritation 
for the users. In order to obtain utilities for various types of 
transitional inputs in a DTN, we conducted a questionnaire 
study at Stanford University about interacting with a 
receptionist in a hypothetical situation. We asked subjects 
to imagine scenarios where they would make a typical 
request to a receptionist, and where the receptionist, who 
did not understand the request, would respond according to 
various strategies, such as requesting that the subject repeat  
the request (e.g., “I’m sorry, can you repeat that?”). 
Subjects rated each response on a Likert scale. One of the 
results demonstrate that subjects (n = 104) significantly (t = 
9.86, p < .0001) preferred a simple request for a repeat 
over a request for an elaboration (e.g., “I’m sorry, I need 
more information.”). One explanation of this result is that 
the cost of repair implied by an elaboration, which occurs 
at the intention level, is greater than the cost of repair 
implied by a repeat. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. The Bayesian Receptionist inferring the goals of 
the user from an initial utterance and performing value of 
information analysis at the intention level. 

This questionnaire led to the investigation of several 
hypotheses that we are currently conducting for generating 
natural responses. 

• Upward Completion Cost Hypothesis: The cost of 
repair increases with the level at which failure occurs in 
the mutual understanding for grounding. Hence, failure 
and repair at the channel level is preferred to failure 
repair at the signal level, and so forth. 

• Uncertainty Specification Hypothesis: Consistent with 
the Principle of Least Collaborative Effort, interlocutors 
prefer repair strategies that specify the details about the 
source of uncertainty. 

Additional data and enrichment of contextual issues under 
consideration will be useful in confirming, modifying, or 
disconfirming these hypotheses. Psychological studies 
exploring these two hypotheses have already revealed 
automated reasoning strategies we did not previously 
consider. For example, even if the Intention Module may 
indicate high uncertainty, it may be better for the system to 
capitalize on a strategy that feigns a maintenance level 
problem in order to reduce cost; in this case, it may not 
always be best to be honest about the likely source of 
failure. From such psychological studies and 
questionnaires, we are eliciting utilities that can also be 
used for general decision analysis or for identifying 
probability thresholds (Horvitz, 1999). 
 
We are also obtaining utilities for transitional inputs that 
depend on predictive variables such as time. We now 
present a runtime demonstration of how the Bayesian 
Receptionist deals with misunderstanding. 

Runtime Demonstration 

In dialog with a user, the Bayesian Receptionist may 
encounter a misunderstanding that is not restricted to one 
level of uncertainty. Although the Bayesian Receptionist 
infers the goals of a user and provides the appropriate 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. After performing inference at the maintenance 
level, the Bayesian Receptionist decides to ask about a 
word feature. 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
service in the Intention Module, the system must be able to 
recognize and resolve uncertainties that cross multiple 
levels. Figure 3 captures such a situation. A user 
approaches the Bayesian Receptionist, here shown as the 
user interface agent Merlin, and mutters “I uh …I need 
…how do I get to building 25?” Notice that the user 
restarts the utterance twice. Spontaneous speech abounds 
in restarts and other dysfluencies (Clark, 1994; Stolke & 
Shriberg, 1996) which may cause problems for speech 
recognition and natural language parsing. For illustrative 
purposes, that utterance has been typed into a textbox.  
 
The Bayesian Receptionist computes a probability 
distribution over the goals of the user and find that the 
most likely goal, a request for a SHUTTLE fails to exceed 
the probability threshold (Pguess) for Inquire_Goal in the 
Intention Module DTN. Notice that the second most likely 
goal, DIRECTIONS, is very close. Since the maximum goal 
probability is less than a threshold for checking the 
maintenance level (Pmin), the Receptionist performs 
inference over a Bayesian network in the Maintenance 
Module. The results are displayed in the Figure 4. 
 
Here, the most likely state of the maintenance level is 
CHANNEL AND NO SIGNAL, an apt assessment given a 
natural language parser that is not equipped to handle 
restarts. 
 
This information is passed via the Conversation Control 
subsystem to the Intention Module which now evaluates 
the costs and benefits of selecting various types of 
Ask_Repair. Using VOI to consider the best observations 
to make, drawing from three types of features, and 
updating the initial costs of these features in the 
Conversation Control subsystem, the system recommends 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
asking a question that tries to observe the word 
“directions,” or any related metanyms, which would 
ideally discriminate between between the goals of SHUTTLE 
and DIRECTIONS. Since the most likely maintenance state is 
CHANNEL AND NO SIGNAL, the system chooses a query 
frame that specifies a possible misunderstanding at the 
maintenance level. The output is the combination, “I’m 
sorry, I may not have heard you properly. Did you want 
directions?” 
 
Imagine the situation where, in the midst of such an 
interaction with the Bayesian Receptionist, a user notices 
that a shuttle has just approached the front of the building 
and decides to simply break off the interaction. A DTN in 
the Maintenance Module is expecting a conditionally 
relevant second pair part to the question, but the user times 
out of the listening mode, as shown in Figure 5. This is 
very unusual for a dialog so the Bayesian Receptionist 
performs inference over the maintenance level Bayesian 
network again and this time identifies NO CHANNEL as the 
most likely state. Since the maximum probability does not 
exceed a threshold for checking if the activity has been 
completed, given multiple observations, including the 
observation that the user was just previously attentive, the 
system decides to perform a side sequence in the 
maintenance DTN and “knocks” on the display glass. The 
user does not respond again for 10 seconds. This gets 
instantiated in the second round of inference and the most 
likely state is now NO CHANNEL. The Conversation Control 
subsystem considers this evidence and performs inference 
on its own Bayesian network to check the status of the 
joint activity. The most likely status there is UNKNOWN 
TERMINATION of the activity so the Bayesian Receptionist 
just sighs. 

 

Figure 5. The Bayesian Receptionist checks the maintenance level twice to ultimate infer that the joint activity
has been unexpectedly terminated. 



Conclusion and Future Directions 

We have outlined four levels of uncertainty for grounding 
mutual understanding through the use of Bayesian 
networks and DTNs within modules and a larger control 
subsystem. In contrast to the majority of automated dialog 
systems, which focus only on the intention level, we have 
described an infrastructure that recognizes that failures in 
dialog can happen at any of the levels described. Rather 
than writing ad hoc policies to meet such failures, we 
describe explicit representations, inference strategies, and 
decision procedures to reason about and repair 
misunderstanding at any level of analysis. The long-term 
payoff we hope will be systems that handle uncertainty and 
misunderstanding in a natural manner, and that are 
ultimately more robust to failure. We foresee that the 
approach of treating dialog as a joint activity will change 
the experience of interacting with computers in 
fundamental ways. Our research is continuing in the realm 
of building rich models for providing the machinery for 
grounding in conversation. We are pursuing more 
expressive probabilistic models for diagnosing failures and 
for making expected-utility decisions about the best actions 
to take to address potential problems in conversation. 
Research in this area must continue to rely on 
psychological studies to identify the perceived costs of 
conversational states and actions.  
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