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COMMUNICATION, MEANING, AND INTERPRETATION

1. INTRODUCTION

In this paper, I give definitions of Gricean communication, speaker mean-
ing, and addressee interpretation. In order to do this, I first develop a
game-theoretic model of communication which provides a set of suffi-
cient conditions for communication. I then abstract from these to derive
necessary and sufficient conditions. And finally, I base my account of
speaker meaning and addressee interpretation, two symmetric notions, on
my account of communication.

Language is a special kind of tool. It is in fact a complex social insti-
tution. All social institutions are of course tools that enable us to organize
different aspects of social life. It seems plausible that the primary function
of language is communication. Indeed, it is possible to see language, in
particular, meanings, as arising from the interactions of a group of agents.
This is how all social institutions emerge. Language is no different, ex-
cept that it arises from thecommunicativeinteractions of agents. Lewis
(1969) and Schiffer (1972), for example, have argued for such a view. This
makes communication a key concept in any account of language. Grice’s
(1957, 1969) ideas on nonnatural meaning provide the best starting point
for constructing a model and definition of communication.

I will first describe the basic ideas that undergird communication. These
are the ideas of meaning and content and certain aspects of game theory
and strategic inference. I then introduce our two main charactersA andB
and try to fix the parameters of the problem of communication in somewhat
precise terms. Greater precision will come as we move along, but this will
serve as a starting point.

Having done this, I present a range of types of examples that my theory
will be able to account for. This list is far from exhaustive, but it provides
an initial indication of the scope of the model. I then take up one of these
and analyze it. This analysis yields a set of sufficient conditions for com-
munication. As I do this, I urge the reader to keep the other examples in
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mind, because the analysis applies equally to them. And perhaps readers
can test the model with their own examples.

2. MEANING AND CONTENT

Most languages are situated. This makes it possible for different propo-
sitions to be communicated in different circumstances with the same
sentence. For example, an appropriate utterance of “It’s 4 pm” on different
days results in quite different propositions being expressed, that it is 4
pm on the day of utterance. The situation theory of Barwise and Perry
(1983) makes this context-dependence an integral part of utterances. Once
we allow situations a role in the determination of content, it becomes clear
that there are certain aspects of utterances that are constant across utterance
situations and there are others that vary from one situation to another. One
of the most salient linguistic constants is the meaning of a sentence. This
is different from its content in an utterance, which varies from situation to
situation.1 Meaning is the collection of possible contents of a sentence. If
A utters a sentence in a situation, it allowsB to disambiguate it and choose
one or more propositions from this collection as its content. We could in
fact write a simple schematic equation of the form “(meaning of) sentence
⊕ discourse situation (or the situation of utterance) = content.”

Part of the task of a theory of communication is to explain how this
equation comes about. If a language is given, its meanings are given. Then
the problem is to get from meaning to content via the discourse situation.
Solving this problem in a completely general way turns out to be an ex-
tremely difficult task. This is what we will set out to do. To carry it out, we
will need some tools.

3. GAME THEORY

I bring to this problem the powerful ideas of game theory developed by
von Neumann, Nash, Arrow, Debreu, Aumann and other game theorists
and economists. The ideas of rational agency, strategic interaction, and
equilibrium developed in this tradition provide the framework we need to
solve this problem. They allow us to extract one more salient constant (like
meaning) from the discourse situation and refine the schematic equation

1 Many writers use “meaning” to refer to what I am calling content. This is also the
colloquial use. Unfortunately, there are two different concepts we need to talk about, so we
need two different terms. I also use meaning to refer to the related meaning function.
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above to “agent architecture⊕ sentence meaning⊕ situation of utterance
= content.”

The idea of rational agency tells us, via its axioms (see Myerson, 1995),
how a rational agent chooses an action from a set of actions. In our case,
these actions are utterances and interpretations. The agent has a preference
ordering over these actions and chooses actions in accordance with these
preferences. This preference ordering can be translated into a numerical
scale. Each action results in a payoff that can be measured on a utility scale.
The agent then chooses the action with the highest utility. A slight wrinkle
is introduced when we consider uncertainty. If payoffs are uncertain, as
they often are (consider buying a lottery ticket as an action), then the agent
assigns a probability distribution to the possible outcomes, and a payoff to
each outcome. In this case, the agent chooses the action with the highest
expectedutility.

An agent can no longer do this quite so simply when there are other
rational agents around. The actions of other agents also affect the first
agent’s payoffs. That is, payoffs are functions of everyone’s actions. The
idea of strategic interaction tells us how a rational agent takes into account
another rational agent’s possible actions before choosing his best option. In
our case, this means howA andB take each other’s possible actions into
account before choosing their utterance and interpretation. Taking another
agent’s actions into account involves considering not only his options but
also his knowledge and beliefs, especially his shared knowledge (with the
other agent) of the situation. This is a generalization of the first idea to
a multiperson situation. I call the reasoning of agents in a gamestrategic
inference. We could of course consider more than two agents if we wanted.
But we will stick to two agents to keep the logic simple and clear.

The idea of equilibrium comes from physics. In the context of game
theory, it tells us when the combination of choices by two or more agents is
in balance. No agent has an incentive to change his action. There are other
possible conditions on equilibrium (and this has been an area of research
in game theory), but the basic idea is that optimality in the single-person
case gives way to equilibrium in the multiperson case.

Grice, and subsequently, Strawson (1964), and especially Schiffer
(1972) have shown how communication involves extremely complex in-
teractions between speaker and addressee. These interactions are precisely
strategic interactions. However, game theory as currently formulated does
not provide a ready-made tool to model communication. It is necessary to
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develop its insights from first principles. We will also need to generalize
the framework of game theory itself.2

Apart from the obvious benefits of formalization, why do we need
game theory? Isn’t it possible to improve upon what Grice, Strawson, and
Schiffer did using their methods? I think not. If we are really to give an
account of natural language communication, we have to take into account
its situatedness explicitly. This means we need to be able to disambiguate
between multiple contents. I claim this is not possible without mathemat-
ics, because probabilities are involved, and this leads to a vastly more
complex structure than it is convenient or possible to handle in natural
language. Besides, once one employs the relevant mathematics, things
actually become simpler, and this is one of the obvious benefits of formal-
ization. Another is precision. A third is the possibility of defining concepts
like communication and deriving their properties rigorously. Note that the
game theory I introduce doesn’t simply extend the analyses of communi-
cation and speaker meaning to cases where there is ambiguity. It provides
a new and, I think, more correctdefinition of these concepts. It thereby
provides better prospects forreducingthem to the more basic concepts of
intentions, beliefs, and knowledge.

This brings us to the parameters of our situation.

4. THE SITUATION

We already have two rational agentsA andB. What do we need to know
about them to get started?A andB have common knowledge3 of their
rationality.

Next, we haveA uttering an indicative sentenceϕ assertively in dis-
course situationd to convey some informationp to B. B attempts to
interpretA’s utterance ind. WhenA uttersϕ, B uses his knowledge of
the language to get at its meaningm(ϕ), which is the collection of possible
contents of the utterance.

2 A game is a structure where all agents have common knowledge of this structure.
I generalize this notion of a game to what I call astrategic interactionwhere agents no
longer have common knowledge of the structure. More about this later.

3 Common knowledge betweenA andB of a factf is the requirement thatA knows
f , B knowsf , A knowsB knowsf , B knowsA knowsf , and so on, ad infinitum. This
concept was first introduced by Lewis (1969) and Schiffer (1972). It has since become a
staple of game theory.
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Some aspects of the utterance will be public.4 The agent architecture
is public before the utterance and the sentence uttered will be publicly
available to both agents after the utterance. The meaning of the sentence,
being a linguistic constant, will also be assumed to be public. Other aspects
will, in general, be private, like the beliefs and intentions of the speaker and
addressee.

Our initial problem is to spell out sufficient conditions forA to
communicatep to B by utteringϕ in d.

5. STRATEGIC INFERENCE

Sometimes it is helpful to embed a problem in a larger problem either to
get a better perspective on it or to solve the larger problem as a way of
solving the smaller problem. We will do it for the first reason, to get a
better perspective on communication.

We can embed communication in the larger picture of information flow
developed by Dretske (1981), Barwise and Perry (1983), and Barwise
(1997).

Reality can be viewed as consisting of situations linked by constraints.
It is the constraint between two situations that makes one situation carry
information about (naturally or nonnaturally mean, in Grice’s sense) an-
other situation. A smoky situation involves a situation with fire in it. This
is the constraint we describe when we say “Smoke means fire.” This is
an instance of natural meaning. An utterance situation with the sentence
“There is a fire” also involves a situation with fire in it. This is the con-
straint we describe when we say the speaker means something is on fire.
This is an instance of nonnatural meaning. In the first case we would write
s1 H⇒ s2 and in the second,u H⇒ s2. An agent who perceives the first
situation (either smoke or the utterance) and who knows the relevant con-
straint (either natural or nonnatural) can infer the existence of the second
situations2.

Though the two constraints are quite different, I will argue later that the
terms “natural” and “nonnatural” are perhaps not the best way to capture
this distinction. The distinction originates with the classical distinction
between “natural” and “conventional” but Grice introducd the term “non-
natural” to accommodate nonconventional transfers of information that are
not natural, like nonconventional gestures, drawings, sounds, and the like.

4 Public knowledge is interchangeable with common knowledge, more or less. See
Barwise (unpublished).
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Given a group of agents, or distributed system as computer scientists
call it, there will be all kinds of information flows. A communication is
a special type of information flow between agents. Indeed, it is the type
of flow that language makes relatively easy to accomplish, but that is not
exclusive to language.

In what way is communication special? While smoke indicates fire, it
doesn’tcommunicatefire.5 Why not? Because it doesn’t have anintention
to do so. Why is an intention required? Because our intuitive notion of
communication is that it is something only agents can do. This certainly
rules out all inanimate objects, except maybe sufficiently sophisticated
computers.6 What about insects like bees, however? We do say that bees
communicate even though they don’t have intentions.7 I suppose we have
to admit two differing intuitions here. One intuition is that communication
is the mere transmission of information, the other is that it is something
agentive and more complex. The problem with the first notion is that the
intuitive distinction between animate and inanimate transmission8 also col-
lapses, and all information flows become communicative. Besides, there is
the intuition that human communication is different from mere information
flow. How do we do it justice? By bringing in intentions to start with.

Grice brought in a lot more conditions as counterexamples to proposed
definitions piled up, but the starting point was the requirement that the
speaker have an intention to convey the relevant information. One im-
portant condition Grice introduced was that this intention be recognized
by the addressee. This was required because ifA were to leave a sign
(e.g. someone’s, sayC ’s, handkerchief) forB at the scene of a crime to
indicate thatC had been there,B may not be able to infer thatA had
intended to put it there. Intuitively, this is not a case of “full” communica-
tion. Something is missing, and this, Grice suggested, is the recognition of
A’s intention. Grice, and Strawson and Schiffer after him, developed this
line of reasoning considerably, adding more conditions to the definition of
communication.

I will sidestep this reasoning involving definitions and counterex-
amples, and jump directly to building a model and definition of com-
munication. What we need for the moment from the foregoing is that
communication involves both the speaker and addressee jointly inferring

5 That is, it doesn’t communicate that there is a situation with fire in it.
6 Though here it may be the programmer’s intentions that are relevant, which allows us

to impute intentions to computers. But more on this later.
7 This itself is perhaps a moot point.
8 Bees occupy a middle ground.
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various things about each other. I will call this joint two-sided inference a
strategic inference.

My basic insight is that all intended information flows between agents
involve a strategic interaction between them. When the strategic interac-
tion is common knowledge between the agents, that is, when it is agame
(with a unique solution), the flow will be communicative. Roughly then,
A communicates toB just in case there is a game betweenA andB. It is
this insight I will make precise in my definition of communication.

I argue this by first developing a detailed account of one strategic
inference. In my view, every utterance involves many separate acts and
corresponding strategic inferences. For example, communication typically
involves a referential act. Figuring out the reference will then involve a
strategic inference. In general, each bit of information communicated will
require its own strategic inference. So any complete utterance involves a
system of simultaneous strategic inferences. These inferences have to be
simultaneous because, in general, they codetermine each other. An utter-
ance of “Mary had a little lamb” will require inferring the designata of each
of the five words in the sentence, not to mention its internal structure. Only
then is it possible to get at the content of the utterance. No individual word
has any priority in this determination. That is, there may be interactions
among the various strategic inferences. And the embedding circumstances
play a vital role in each inference. Mathematically, this amounts to a
system of simultaneous equations.9

To keep things simple, I will focus on just one strategic inference in
isolation. I will assumeB has the partial information obtained from all
the other inferences.B ’s problem is then to use this partial information
together with the utterance situation to get to the intended content.

Consider as an example the sentence “Every ten minutes a man gets
mugged in New York.” This is a familiar type of ambiguity, typically
viewed as an ambiguity between two possible quantifier orderings. One
reason for this type of choice is that it is widespread in language and in the
literature. There are other ambiguities too in this sentence. For example,
“minutes” is ambiguous between the temporal meaning and the minutes of
a meeting. New York is ambiguous between the city and the state. “Every
ten minutes” is also vague because it usually indicates “about every ten
minutes.” But I will consider only the quantifier orderings.

A successful strategic inference requires a number of assumptions in-
volving rationality, the agents’ intentions, and their knowledge and beliefs.
These assumptions will be our sufficient conditions. An important con-
sequence of the analysis is that the content communicated depends not

9 It is possible to deal with all the inferences as one big inference, of course.
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only on what was uttered but also, crucially, on what the speakermight
have uttered but chose not to, and on their shared information about these
choices.

I will build up a strategic inference step by step from the discourse
situationd. This will make the role of the assumptions clearer and suggest
ways in which the construction can be generalized or modified to include
other complexities. The constructed structureg(ϕ) turns out to be a new
kind of game. I call it a game of partial information. The content commu-
nicated will then be given by the Pareto-undominated Nash equilibrium of
the game.10

6. SOME MORE EXAMPLES FIRST

Lest the reader think the model applies only to the example above or only
to this type of ambiguity involving quantifier orderings, I consider in this
section many different types of examples of resolution and ambiguity to
which the model applies.

1. I’m going to the bank (lexical ambiguity)
2. He saw her duck (structural ambiguity)
3. It is 4 (indexical resolution)
4. He is eating (pronominal resolution)
5. Bill said to Bob that he would join him today (double anaphora)
6. The book is highly original (noun phrase resolution)

Most of the choices for interpretation in the above examples are
fairly obvious. Once again, there are multiple ambiguities and resolution
problems in each. I have identified which problem I’m considering in
parentheses. My list is far from exhaustive. Indeed, the game-theoretic
model applies to any and every type of communication, including visual,
gestural, aural, and even olfactory and tactile ambiguities. It applies to all
actions.

The reader should keep these other examples in mind as we proceed
with the main example. This will make it easy to see how the model
can be adapted to these other examples and indeed, to any example of
communication.

10 I explain these terms below.
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7. THE MAIN EXAMPLE

SupposeA, after having picked up the information in a recent newsletter
of The Muggees Association of New York (i.e. M.A.N.Y.), says toB in
situationd:

“Every ten minutes a man gets mugged in New York.” (ϕ)

A could mean either that some person or other gets mugged every ten
minutes (call thisp) or that a particular man gets mugged every ten minutes
(call thisp′). It must be the situationd that enablesB to disambiguateϕ.

Though both interpretations are possible in different circumstances, it
seems plausible to say that ind B would inferp as the intended content.
In fact, we could say thatA communicatesp to B.

I will make two sets of assumptions to explain this disambiguation and
its communication. The first set applies to all situations of interest, more
or less. They have to do with the architecture (or “nature”) of communi-
cating agents generally. The second involves more specific circumstantial
assumptions, pertaining to the discourse situationd.

For the first set, called the Background Assumptions, we assume that
bothA andB are rational agents. (Grice also assumes rationality, but not
in its choice-theoretic form.) Moreover, this is common knowledge. This
is important because the agents would act differently if they didn’t know
they shared a common architecture.11

L is a shared language.m is its meaning function. It is a mapping from
sentences to propositions. I said earlier that meaning is constant across
situations. That is why this assumption is in the background.

The Circumstantial Assumptions contain, in this particular example, the
assumption thatA has the intention to convey12 p to B.

Next, A utters ϕ publicly. After all, the process has to get off the
ground.

B must have a corresponding intention to intepretϕ. Without it, he will
not play his interpretive part.

11 They would have to consider alternative architectures and so on.
12 We cannot say “intends to communicate” here because that would imply a circularity

later when we define communication. The word “convey” just means “transfer.” This is in
fact the kind of simple intention we have when we communicate.
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TABLE I

Summary of Assumptions

Background Assumptions

1. A, B are rational.

2. L is a shared language.

3. m is a function fromL to the power set of the collection of propositions.

I call it the meaning function ofL or just the meaning ofL.

4. The above assumptions are common knowledge betweenA andB.

Circumstantial Assumptions

1. A intends to conveyp.

2. A uttersϕ.

3. B intends to interpretϕ.

4. B receives and interpretsϕ.

5. m(ϕ) = {p,p′}.
6. p′ is relatively unlikely.

7. Expressingp, p′ unambiguously takes greater effort than expressing

them ambiguously.

8. All of the above except (1) and (3) are common knowledge.

B must also receive and interpret the utterance and this must be
public.13 Without publicity, p won’t become public at the end of the
communication.14

m(ϕ) = {p, p′}.
Also, p′ is relatively unlikely, and expressingp unambiguously takes

greater effort than expressing it ambiguously. The meaning and use of
these assumptions will become clearer as we proceed.

Except for A’s and B ’s intentions, the assumptions are common
knowledge betweenA andB.

13 These four assumptions (speaker and addressee intention and utterance and recep-
tion/interpretation replace Grice’s principle of cooperation. That is, if agents act in the
right way, communication can occur, but if they don’t, communication can’t occur. There
is nothing that forces them to cooperate, as Grice required.

14 Usually, a copresent addressee responds with movements of the head (nodding) and
eye contact, indicating that he is attending to the conversation.
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The two sets of assumptions taken together will be called theBC as-
sumptions. The Background Assumptions hold in the background situation
B and the Circumstantial Assumptions hold, of course, ind. B is a part of
d.

A andB need not be persons. They can be suitably equipped artificial
agents.

My claim then is that if all theBC conditions above are satisfiedA
will communicatep to B.

8. GAMES RATIONAL AGENTS PLAY

We are now ready to build a game-theoretic model. There are many dif-
ferent types of games depending upon the application we have in mind.
Unfortunately, none of these is directly suitable for us. The closest type is
games of incomplete information.15

I will keep this model in mind, but adapt it to our purposes. The new
type of game we get is something I call a game ofpartial information. To
construct this, I will start more or less from scratch.

There are different ways to interpret game-theoretic models. I think
it is unrealistic for many applications to imagine that agents play games
explicitly. We certainly don’t seem to be playing games explicitly when
we communicate.

It seems better to view the game as a model of a class of constraints
that captures the underlying logic of communication. Modus ponens cap-
tures the logic of a deductive inference without implying anything about
how agents actually act when they arrive at a warranted conclusion. The
game I will construct describes a valid strategic inference without imply-
ing anything about how agents arrive at the correct interpretation of an
utterance.

Despite this, it is convenient as a façon de parler to talk as if agents are
actually performing the relevant steps of a strategic inference. This makes
the model more intuitive.

9. THE MODEL

We have the backgroundB and discourse situationd. B contains the back-
ground assumptions andd contains the circumstantial assumptions. We
want to derive the equation “agent architecture⊕ meaning⊕ d = p,” and

15 See Myerson (1995).
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justify the claim above. The first two components of the equation are the
elements ofB.

I will start with A’s intention because that comes first.A intends to
conveyp to B. There are many waysA could do this, but the most conve-
nient (i.e. efficient) is to useL. L has many sentences that will do the job.
One may beϕ. I say “may be” becauseA doesn’t know at the outset if the
ambiguity can be resolved. Another isµwhich is “Every ten minutes some
man or other gets mugged in New York.”µ is unambiguous (with respect
to quantifier orderings) so thatm(µ) = {p}. In fact, any unambiguous
sentence will do, but we will stick withµ.

SoA has two possible actions. We can collect these to form his choice
setC(p).16

SinceA is rational, he will evaluate the consequences of both actions
and then choose. I will first considerϕ.

10. THE LOCAL GAME

We know from the assumptions thatB receivesϕ if uttered. He then forms
an intention to interpret it. This puts him in a predicament becauseϕ is
ambiguous. After all,m(ϕ) = {p, p′} by assumption. At this stage,B has
no way to choose either content. This situation can be modelled by the tree
(actually forest, because it is two simple trees) in Figure 1.

Figure 1. Stage One of Local Gameg(ϕ)

The two initial nodess ands′ representA’s intention to conveyp or
p′. s ands′ are situations containing the relevant intentions.A knows he is
in s and not ins′. That is, he knows his own intention.B knows only that

16 We could consider more actions, but why complicate things unnecessarily? In
any case, we can already write down his entire choice set in symbols. It isC(p) =
{m−1(P )|P ∈ m(L) andp ∈ P }.
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eithers or s′ could be factual. In fact, he knows this only afterA uttersϕ,
something that will be important later.17

The two branches emanating froms and s′ are the same action of
utteringϕ. ϕ is a possible action for both intentions.

If A uttersϕ in either situation, he moves to a new situationt or t ′.
Once again,A can distinguish betweent andt ′, butB can’t.B ’s epistemic
indigence is represented by an oval and{t, t ′} is called an information set.

All this is common knowledge because they started with common
knowledge ofm(ϕ) and we assumed the utterance and its reception are
public.

One thing remains: the twoρs. Since it is common knowledge thatp is
more likely thanp′, the agents can take it to be common knowledge thatA
probably intends to conveyp rather thanp′.18 We can, for specificity, take
ρ = 0.9 andρ ′ = 0.1. That is,A andB assess the same probabilities. This
is not necessary of course, but I will assume it for convenience. These prob-
abilities can be objective or subjective, in general. But they will usually be
subjective because objective information will often not be available.

B has to choose an interpretation at this point. He has the same two
choices att andt ′, eitherp or p′, as shown in Figure 2.

Figure 2. Stage Two of Local Gameg(ϕ)

Knowing thatt or t ′ is factual allowsB to infer thats or s′ is factual.
This is the same as saying that he infersA’s possible intentions. Impor-
tantly,A does not have tointendthis recognition ofA’s primary intention.
It just happens as a logical consequence of rationality. After all,B wants to
interpretA’s utterance, and to do this he needs to figure out his preferences.
This requires him to inferA’s intentions.

17 This is what makes the game we are constructing a game of partial rather than
incomplete information.

18 In general, there is a difference between these two probabilistic situations, and it
is only the second, involvingA’s intention, that matters. In the absence of any special
information, one situation does inform the other, as above.
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If he is in t ,p is the preferred choice, and if he is int ′,p′ is the preferred
choice. Unlike standard game theory however, these preferences are not
externally given, but derived internally from the relevant intentions. They
are endogenous, not exogenous. This requiresB to recognizeA’s possible
intentions, as required by Grice, but in a generalized setting where there
is ambiguity. Later, we will see that this is not really required, and that
payoffs can be exogenously given.

At this stage, it is common knowledge that ifB is in t , the intended and
preferred interpretation isp, and if he ist ′, it isp′. It is common knowledge
because the agents started with common knowledge and everything that
followed is a consequence of this common knowledge.

Unfortunately,B has as yet no clue about his location. He knows only
that he is either int or t ′.

BecauseB cannot tell where he is in the tree, it is not clear how he
should choose: the optimal action is different att andt ′. A is probably con-
veyingp, and this is common knowledge between them. But this additional
information does not enableB to eliminate the uncertainty involved.

A knows of course that it ist that results from his utterance ofϕ.
But A also knows that forB t and t ′ are in the same information set. In
fact, it is easy to see that theBC assumptions imply that the information
represented by the tree above becomes common knowledge between them
onceA uttersϕ.

As it stands, the preference ordering above needs to be strength-
ened into a von Neumann–Morgenstern (N–M) utility function. Each
interpretation can then be assigned a numerical value.19

To keep things simple, I will assume thatv(s, ϕ, p) = v(s′, ϕ, p′) >
v(s, ϕ, p′) = v(s′, ϕ, p), wherev is the payoff function. Information car-
ries the same utility and misinformation the same disutility. To be specific,
I will assign the two numbers 10 and−10 respectively.

In general, there will be two payoff functionsvA andvB for A andB.
I will assume thatvA = vB = v.

It is quite possible to entertain different numbers and different payoffs
for A andB. We will be doing so later. Right now it would just complicate
things to consider all these possibilities.20

Figure 3 makesB ’s dilemma clear. He cannot tell where he is and the
payoffs are symmetric and conflicting. If he chosep, he would get 10, if

19 All (positive) linear transformations of the payoff function are considered equivalent.
20 Communication is usually embedded in other actions. It is possible to derive a numer-

ical value of information from these embedding actions. If we do this, we do not need to
assume arbitrary values as I have done above. But this valuation procedure may not be as
general.
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Figure 3. Stage Three of Local Gameg(ϕ)

he was int . But if t ′ were factual he would end up with−10. And the same
problem crops up with a choice ofp′. If he were to choose one or the other
randomly, say by tossing a (fair) coin, he would get an expected payoff of
0, certainly much lower than his maximum possible payoff!

If there was nothing else to the discourse situation, it would not be
possible forB to disambiguateϕ in d. A and B need to compare this
ambiguous utterance against an unambiguous one, to ensure that it is more
efficient. In other words, they need to consider sentencesµ andµ′ where
µ′ is something like “Every ten minutes a particular man gets mugged in
New York”.m(µ) = {p} andm(µ′) = {p′}.

This enablesB to construct the model of their interaction in Figure 4,
onceA has saidϕ.

Figure 4. Local Gameg(ϕ)

B ’s only choice of interpretation ate isp and ate′ isp′. This is because
µ andµ′ are unambiguous.

How do we assign payoffs to the new paths? The only difference be-
tweenv(s, ϕ, p) and v(s, µ, p) lies in the costs involved.µ andµ′ are
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longer thanϕ and so costlier.21 Sov(s, µ, p) < v(s, ϕ, p). Also, the addi-
tional cost involved is small relative to the difference between information
and misinformation. I will take this payoff to be 7. The same considerations
apply to the path withµ′ and we setv(s′, µ′, p′) = 7.

This is B ’s model of their interaction. But because it is constructed
from their common knowledge the entire model is in fact available to both
A andB (to B only afterϕ has been uttered). This makes the model itself
common knowledge (also only afterϕ has been uttered). This structure,
denoted byg(ϕ), is a new type of game that I will call a game of partial
information. I will also call it a local game because it will turn out to be
part of a larger structure called a global game.g(ϕ) is then a local game of
partial information.

We began this discussion to look at the possible consequences ofA’s
utteringϕ in d. We now have part of the answer to this question. Upon ut-
teringϕ, (the information contained in)g(ϕ) becomes common knowledge
betweenA andB.
g(ϕ) is the choice situationB faces, and so is the situationA has to

consider before he actually choosesϕ. Is there enough information ing(ϕ)
for B to eliminatet ′ as a possible location and so be able to choosep?
This is B ’s problem. But it is also thereforeA’s problem, becauseA’s
optimal choice will depend in part on whetherB has enough information
to solve this problem. This is what makes their interaction strategic, since
each agent has to consider the other’s situation.

I will show in the next section that it is possible forB to eliminatet ′.
The argument for this is intricate and it seems best to discuss it after a
complete account of the choice structure. For now assume thatB is able
to eliminatet ′ and choosep as his preferred interpretation. Sinceg(ϕ) is
common knowledge between them, it seems reasonable to assume thatA
has access to this reasoning. This enablesA to anticipateB ’s choice ofp.
As a result, both receive a payoff of 10. We will say that the value ofg(ϕ),
v[g(ϕ)], is 10.

A’s choice structure is now easy to see. For every sentenceψ in C(p)
there is a corresponding local gameg(ψ). For example,g(µ) is the trivial
game in Figure 5.
g(µ) clearly has a value of 7.

Figure 5. Local Gameg(µ)

21 In general, costs will depend upon a number of factors including length and
grammatical structure.
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11. THE GLOBAL GAME

A has to choose the sentenceψ that yields the highest valuev[g(ψ)]. This
problem is represented in Figure 6.

Figure 6. Global GameG(p)

If A considers onlyϕ andµ, his optimal action is to utterϕ. I will
call this larger structure (in which the various local games are embedded)
the global game (of partial information) and denote this byG(p).22 I have
implicitly assumed that every local game has a value and this is something
I justify later.

But we now have a complete picture of the interaction that makes it
possible forA to communicatep to B.

We have come full circle. I started by consideringA’s intention to
conveyp. That took us on a long path, along which we constructedg(ϕ),
and which ended with whyA should utterϕ andB should intepret it as
conveyingp. It is this dual, “two-sided” interaction, or strategic rationality,
that makes communication possible. Grice and Schiffer focus on speaker
meaning and so miss out on the strategic aspect of communication, and
also, incidentally, of speaker meaning, as we will see. It is to make this
strategic dimension clear that I have started with communication rather
than speaker meaning.

I should point out an important asymmetry inG(p) however.B gets
to consider only one local game, the one constructed fromA’s optimal
choice.A, on the other hand, has to consider all the local games issuing
from his choice set and then choose the best one. It is not possible or
necessary forB to considerC(p).

It is now time to justify the two provisional statements made earlier.
The first concerns the reasoning thatB can employ to eliminatet ′ upon

22 This structure can be thought of as a two-stage game forA and a one-stage game for
B. But it isn’t quite this either. That is why I have given it a new name, a game of partial
information.



202 PRASHANT PARIKH

receivingϕ. The second has to do with the existence of a value for every
g(ψ) thatA might consider.

12. SOLVING GAMES RATIONAL AGENTS PLAY

Before turning to solvingg(ϕ) it is worth making a general distinction in
the context of our game-theoretic analysis. It is important to distinguish
between the modelg(ϕ), the different sorts of interactionsg(ϕ) could be
a model of, and consequently the different ways in which the model could
be analysed. A similar distinction is explicitly made by Aumann (1985)
and also by Kreps (1985). I have already made it implicitly by separating
the model from its analysis.

Solving a game involves finding a pair of “strategies” (one for each
player in a two player game) that is in some sense optimal. It appears that
there are many different ways to solve the same abstract game, each way
being more or less appropriate depending on the particular interpretation
we give to the game. A solution concept that may seem appealing in an eco-
nomic or political context may not be as appealing in a discourse situation;
even two different economic contexts or two different discourse situa-
tions may provide different grounds for accepting or rejecting a proposed
solution.

One persistent problem with many solution concepts is the existence
of multiple solutions.23 This multiplicity is troublesome in most situations
because if two or more strategy pairs are optimal then players may not
know which strategy to play and choosing different or nonmatching optima
may result in a suboptimal outcome.

To take Schelling’s (1960) example, if two people have to meet in New
York and are not in a position to communicate with each other, any place
in the city would do as long as they both choose the same spot. This is a
(coordination) game with multiple “solutions”. But such solutions are ob-
viously not particularly helpful in prescribing a course of action. Of course,
in situations like these, in the absence of other relevant information (per-
haps both players are natives and this is common knowledge between them
making Grand Central Station a “salient” spot; or it is common knowledge
that they are both tourists which might make the Empire State Building
“focal”) one should not expect unique solutions. In fact, Lewis (1969) uses
this nonuniqueness as a necessary condition in the definition of conven-
tions. It is the existence of multiple rational ways of doing something that

23 This is an important part of the reason why so many solution concepts have been
investigated.
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makes it worthwhile for the players involved to agree on a convention.
But it turns out that most solution concepts also allow many unintuitive
and implausible solutions to slip past their restrictions, at least under some
interpretations of the abstract game under consideration. Exactly which
(and how many) solutions are intuitively warranted in a game seems to
depend on other features of the particular context being modelled.24

I made the distinction above to keep open the possibility of using differ-
ent solution concepts for the same local gameg(ϕ). The solution concept I
use here combines one of the more popular solution concepts called Nash
equilibrium with the idea of Pareto dominance.

To spell out the concept of a Nash equilibrium we first need to say
what a strategy is. A strategy prescribes actions for a player in all possible
situations where he has to act. It is essentially a function from the set of all
the decision nodes of a player to a set of actions. For example, the function
{(s, ϕ), (s′, ϕ)} is one ofA’s strategies in the gameg(ϕ). A has only two
possible choice situations and a strategy specifies his choices in both of
them. Obviously,A has exactly four strategies in this game. It is important
to note that a strategy forA involves a specification of what he would do
in s′ even though he knows thats′ isn’t factual. This is necessary because
B needs to consider whatA might do ins′ and soA needs to consider
whatB might do if he takes into account the possibility thatA might be
choosing an action ins′.

B ’s strategies involve a slight complication and with it a small refine-
ment of the rough definition of strategy above.B has four choice situations
to considert , t ′ ande, e′. Sincet and t ′ belong to the same information
set,B cannot distinguish between the two and soB ’s choices att and t ′
have to be constrained to be the same. That is, the correct domain for the
strategy of a player is not the set of all decision nodes but the set of all
information sets. InA’s case, the domain of a strategy will contain the
singleton information sets{s} and{s′}.

A has the following four strategies:

1. s 7→ φ, s′ 7→ µ′ = 〈φ,µ′〉
2. s 7→ φ, s′ 7→ φ = 〈φ, φ〉
3. s 7→ µ, s′ 7→ φ = 〈µ, φ〉
4. s 7→ µ, s′ 7→ µ′ = 〈µ,µ′〉

And B has the following two strategies:

24 In many discourse situations nonuniqueness has in fact a different sort of interpre-
tation, making possible the extraction of information not otherwise available. If a local
game has multiple solutions and ifA chooses to play it then some sort of ambiguity is left
unresolved in the communication and this may convey to the addressee that the ambiguity
was intentional for some reason or other (punning, for example).
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Figure 7. Local Gameg(ϕ)

1. e 7→ p, t, t ′ 7→ p, e′ 7→ p′ = 〈p, p, p′〉
2. e 7→ p, t, t ′ 7→ p′, e′ 7→ p′ = 〈p, p′, p′〉

We can simplify the notation if we specify the information sets of a
player in some predefined order, say, from top to bottom with respect to
the tree. We can further simplify the representation ofB ’s strategies by
explicitly mentioning only those decisions that represent a “real” choice.
Thus,B ’s choices are constrained to bep andp′ ate ande′ respectively, so
we need not mention these explicitly. Note that we have already made an
implicit simplification in our specification of the strategy functions above.
The values of the two functions have been represented as either sentences
or propositions. They are actually the corresponding actions, either of ut-
tering the sentence in question or of interpreting the uttered sentence as
expressing the relevant proposition.

If a is a strategy ofA’s andb of B ’s then the pair〈a, b〉 is called a joint
strategy. This gives exactly eight strategies in the gameg(ϕ) above. These
constitute the strategy space. Intuitively, the unique solution of this game
is 〈ϕ,µ′, p〉.

What I have defined above is the concept of apurestrategy. In general,
players canmix strategies by randomizing on their pure strategy sets. The
strategy space then is the set of ordered pairs of probability distributions,
one for each player. The argument below can be easily extended to this
larger space so I will restrict my remarks to pure strategies. ‘Strategy’ will
henceforth mean pure strategy.

A strategy is a Nash equilibrium if no player has an incentive to deviate
unilaterally from this strategy. Unilateral deviation by a player is devia-
tion keeping the strategies of other players fixed. Consider〈µ,µ′, p〉. B
certainly has no incentive to deviate fromp to p′—it makes no difference
which of the two he chooses becauseA’s strategy doesn’t allow the in-
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formation set{t, t ′} to become factual. But ifA deviates unilaterally to
〈ϕ,µ′〉 then he certainly does better. This eliminates〈µ,µ′, p〉. A quick
run through the strategy space will show that only〈ϕ,µ′, p〉 and〈µ, ϕ, p′〉
are Nash equilibria. Call themN1 andN2.

This is probably the most widely used solution concept in the theory of
(noncooperative) games. It is worth pointing out though that this criterion
cannot be directly deduced from the axioms of utility theory that charac-
terize the behaviour of individual rational agents (see Bernheim (1984),
Brandenburger and Dekel (1985)). Its plausibility lies in its being a neces-
sary condition for rationality if it is already assumed a priori by the players
that some rational prescription for action exists in the game.

I will use the Nash criterion without further justification here. We still
have to face the fact that there are two Nash equilibriaN1 andN2 only one
of which is intuitively plausible. We need further conditions to differentiate
betweenN1 andN2.

To solve this multiple equilibrium problem I will use the idea of Pareto-
dominance. It says simply that of two strategies in a game, if one results
in higher payoffs for all players concerned, the other can be eliminated.
Though this appears to make perfect intuitive sense there is a problem
with it because it implicitly assumes some degree of correlated action
(deviation) among players, something that requires additional assumptions
to be warranted in a noncooperative game. In fact, there is often a conflict
between the Nash criterion and the Pareto dominance criterion (as evinced,
for example, by the Prisoner’s Dilemma).

I will use Pareto dominance as a second-order criterion. First, we deter-
mine the set of Nash equilibria. Then we apply the Pareto criterion to this
set. This ensures that all solutions satisfy the important Nash property that
there is no incentive to deviate. That after all is what justifies calling it an
“equilibrium” strategy. And this second-order way of using it to eliminate
counterintuitive Nash equilibria is easier to justify.

Applying the Pareto criterion to the Nash set oustsN2. The expected
payoff fromN1 to both players is 0.9(10) + 0.1(7) = 9.7. The expected
payoff to both players fromN2 is 0.9(7)+0.1(10) = 7.3. This implies that
N1 Pareto-dominatesN2 and that both players can with certainty choose
N1. Sinces is factual, this results inA sayingϕ and in B choosingp
rather thanp′. (Note that the optimal expected payoff is 9.7, much greater
than what is obtainable by tossing a coin (i.e. 0) and foregoing strategic
reasoning, at least so long as its costs are ignored.)

This completes our discussion of how the gameg(ϕ) is solved. A strat-
egy that satisfies this solution concept is called a Pareto–Nash equilibrium.
N1 turns out to be the unique Pareto–Nash equilibrium ofg(ϕ) and so
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its valuev[g(ϕ)] is 10, as I had asserted above. This is one more place
where the difference between games of incomplete information and games
of partial information shows up. Not only do they differ in their qualitative
structure but also in certain quantitative aspects. The relevant value of the
local game forA is 10, not 9.7, becauseA knows which situation he is in.
However, this value is derived from the solution to the local game where
the expected value is what counts.

Note that if we assume equal instead of skewed probabilities (“A comet
appears every ten years”) we are unable to eliminate the second solution
N2 and this squares with our intuition as well. Both interpretations seem
equally plausible in a general context. In this case the optimal solution
would seem to be to spell out the content literally by usingµ asϕ remains
ambiguous. This is interesting because it shows how to justify the use of
a more elaborate expression to avoid an ineliminable ambiguity. Also, if
we have skewed probabilities as above, buts′ is factual rather thans, then
again the optimal strategy is to spell things out by usingµ′ instead ofµ.

How do we define the value of a game that has multiple equilibria? In
the usual way, as the expected value of the set of multiple values. How-
ever, it is unclear what distribution we should use in evaluating expected
values. We will assume that, in the absence of any further information
each equilibrium strategy is equally likely. (This equiprobable criterion is
known to have many weaknesses, but it is perhaps less objectionable in
such higher-order contexts.) In the case of the comet, wheres ands′ have
the same likelihood of occurrence,A should assign equal probabilities to
both solutions in the absence of any information about a preference that
B might have for one or the other. Thus, ifB playsN1 they get 10 and if
he playsN2 they get−10, and the expected value of this set of two values
with respect to a uniform distribution is just 0. This is the value thatA
should consider in making his optimal decision in the global game.

We need to make certain that every gameg(ψ) thatA might consider
does in fact have a value. This is guaranteed to us by a theorem of Nash’s
(1951). Every game has at least one Nash equilibrium in the larger space
of mixed strategies. In fact, it is easy to show that every game of pure
coordination (games in which players have identical payoff functions) has
an equilibrium in pure strategies. In either case, this guarantees in turn that
everyG(p) has a solution. (Actually, the step to the existence of a solution
for everyG(p) isn’t quite so immediate. It requires a consistency condition
between the local and global games to be satisfied. This can be found in
Parikh (1990).)
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This completes my analysis of whyA chooses to sayϕ and correspond-
ingly of howB comes to choose the right interpretationp in the discourse
situationd.

13. DEFINITIONS

We have now discussed more or less completely one set of sufficient con-
ditions for communication. How do we go from here to a set of necessary
and sufficient conditions?

The trick is to abstract and generalize from theBC assumptions by
dropping unnecessary assumptions.25 I have prepared the way for this by
constructingg(ϕ). What we do is drop the assumptions about cooperation,
probability and payoffs that enabled us to constructg(ϕ) and require in-
stead that we merely have a game with a unique solution. The details of
the game and its solution process could be anything at all.

Let me state it without more ado. We start by noting the existence of
a certain functionm (with domain the set of actions and range the power
set of the set of propositions) which establishes a connection between an
utterance ofϕ and a set of propositionsP . This functionm is themeaning
of the utterance.

DEFINITION 1. A communicatesp to B by producingϕ iff

1. A intends to conveyp to B.
2. A uttersϕ.
3. (2) is common knowledge betweenA andB.
4. B intends to interpretϕ.
5. B interpretsϕ.
6. (5) is common knowledge betweenA andB.
7. p ∈ m(ϕ).
8. (7) is common knowledge betweenA andB.
9. g(ϕ) has the unique solution〈ϕ, p〉 for A andB.

A few comments are in order. First, I need to say whatg(ϕ) is precisely,
but it is beyond the scope of this paper. Essentially, as I said above, I drop
the assumptions about probabilities and payoffs in Table 1, and allow these

25 This is exactly like dropping extraneous facts about Euclidean distance to get a
definition of metric space or similar abstractions in mathematics.
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to be given circumstantially in the most general form as functions. My only
requirement is that they yield the desired solution〈ϕ, p〉.26

ϕ is now no longer restricted to sentences of a language. It can be any
utterance, a gesture, showing a photograph, a pictorial action, Herod bring-
ing in St. John the Baptist’s head on a charger, saying “grrr” and the like.
In other words,ϕ includes “natural” and “nonnatural” actions and both can
communicate in the right circumstances. The right circumstances primarily
include common knowledge ofm(ϕ), the meaning of the utterance. The
actions can exploit all sorts of connections with the meaning, whether it is
resemblance or something else. All that is required is that there be some
connection (i.e. some functionm) between the utterance and its meaning.
Schiffer (1972), whose definition appears to be closest to mine in terms of
the examples it includes, also requires a relationR betweenϕ andp. This is
a departure from and generalization of Grice’s definitions, which required
a recognition of speaker intention. This has now been generalized to recog-
nition of m(ϕ) as the medium through whichp is identified. In the cases
where there is no ambiguity (see Figure 5), no recognition of intention is
involved, just a recognition ofm. The intention is available to be recog-
nized, of course, but actually recognizing it involves an avoidable cost.
Interestingly, when there is ambiguity, recognition of intention appears to
be required in some cases at least, but we have dropped the assumption of
cooperation to allow a much wider range of noncooperative interactions.

26 Though I have not made this explicit in my definition, it is necessary to assume that
the probabilities and payoffs, whatever they are, are common knowledge. This is standardly
assumed in game theory. This makesg(ϕ) common knowledge and the solution common
knowledge. This option will cover some situations but far from all.

If we don’t wish to assume common knowledge of the probabilities and payoffs and
therefore of the game, then we must assume there are two games, one for the speaker and
one for the addressee, such that their common solution is〈ϕ, p〉. This is in fact the usual
situation, where speaker and addressee do not share much knowledge of their strategic in-
teraction. However, they do have common knowledge of the game tree and the information
sets. We would thus generalize the last clause of the definition to read:

9′. gA(ϕ), gB(ϕ) have the unique solution〈ϕ, p〉 for A andB.

Note that these two games are defined to have a shared tree structure and information sets
that are derived from the first six conditions above. Only the probabilities and payoffs are
different. In other words, these structures are not completely general strategic interactions,
but something in between a game with full common knowledge and a completely general
strategic interaction. This is really the formulation we need, but since tools to cope with
strategic interactions are scarce, I have chosen the stronger formulation above. This more
general formulation reflects the point made above that speakers cannot directly perceive the
addressee’s payoff maximization and interpretation. It has to be inferred from subsequent
actions and that too, only probabilistically much of the time. And vice-versa.
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In such cases, the payoffs are just given as common knowledge, or arise in
some way other than through the recognition of intention.

As Strawson (1964) has pointed out, there is a certain symmetry be-
tween speaker and addressee, and as should be obvious, this is perfectly
captured by the game. That is why communication is ajoint act, like, for
example the joint act of two or more people pushing a cart uphill. This
suggests that the concept of a joint act may also be defined in terms of
games, with individual acts being present, common knowledge of indi-
vidual acts, and perhaps ann-person game with an appropriate solution.
In other words, such a definition would be a further generalization of the
definition of communication that I have presented here.

Computers don’t have intentions or beliefs when they convey or inter-
pret information and the definition bars computers from communication on
this ground. It may be possible to interpret the condition of an intention to
convey or interpret more liberally. While intentions and beliefs are required
at least for human communication, some other equivalent architecture may
operate in other domains. I will leave the question open.

I mentioned vagueness earlier and we would have to extend the def-
inition to have two meanings,mA andmB , one for the speaker and an
overlapping one for the addressee. There would be no common knowledge
of m and we would have different game-theoretic structuresgA andgB

as we did before. This suggests yet another generalization of our model.
All that would be required for communication in such a case is that there
would be two solutions of the strategic interaction〈ϕ, pA〉 and 〈ϕ, pB〉
with the property thatpA andpB had a sufficient overlap. The criterion
for how much overlap is sufficient could be utility-based, as suggested
by Rohit Parikh (1994). Vagueness is rife in natural languages and so is
vague communication, so this is an important generalization to consider.
It means that communication isn’t quite a game, but is instead a wider
thing called a strategic interaction. We have now two reasons to go beyond
games to strategic interactions. Not only that, my solution suggests that all
communication involves two propositions, one for the speaker (pA) and
one for the addressee (pB). These two propositions may coincide in the
case of nonvague communication, but in general will merely overlap for
vague communication.

We can now see why “natural” and “nonnatural” are perhaps not the
best terms to distinguish between types of information flow. Both natural
and nonnatural features are involved in the definition of communication for
one thing. And more importantly, communication covers cases of natural
utterances as well as nonnatural utterances. We may as well use “commu-
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nicative” and “noncommunicative”, or “meanC ” and “meanNC ” instead,
now that we know what these terms are.

Indeed, we can define “meansC ” in the following way:27

DEFINITION 2. A meansC p by producingϕ iff there is an agentB such
that

1. A intends to conveyp to B.
2. A uttersϕ.
3. A believes that (2) is common knowledge betweenA andB.
4. p ∈ m(ϕ)m.
5. A believes that (4) is common knowledge betweenA andB.
6. A believes thatg(ϕ) has the unique solution〈ϕ, p〉 for A andB.28

Note that “convey” merely signifies a transfer of information. We
can give a corresponding definition for the concept that we might call
“interpretationC ” on the side of the addressee.

DEFINITION 3. B interpretsC ϕ as conveyingp iff there is an agentA
such that

1. A uttersϕ.
2. B believes that (1) is common knowledge betweenA andB.
3. B intends to interpretϕ.
4. B interpretsϕ.
5. p ∈ m(ϕ).
6. B believes that (5) is common knowledge betweenA andB.

27 I include Schiffer’s (1972) definition for reference:
A meant thatp by utteringx iff A utteredx intending thereby to realize a certain state

of affairsE which is such thatE’s obtaining is sufficient forA and a certain audienceB
mutually knowing thatE obtains and thatE is conclusive evidence thatA utteredx with
the primary intention

1. that there be someρ such thatA’s utterance ofx causes inB the activated belief that
p/ρ(t);
and intending

2. satisfaction of (1) to be achieved, at least in part, by virtue ofB’s belief thatx is related
in a certain wayR to the belief thatp;

3. to realizeE.

28 We would have to replace this with a more general clause if we were considering
strategic interactions rather than games. This clause is as follows:

6′. gA(ϕ) has the solution〈ϕ, p〉 andA believes thatgB(ϕ) also has the solution〈ϕ, p〉.
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7. B believes thatg(ϕ) has the unique solution〈ϕ, p〉 for A andB.

Note that “interpret” is different from “interpretC .” The first word
merely signifiesB ’s attempt to figure out whatA’s utterance means with-
out implying the full apparatus required by the technical term “interpretC .”

Note thatA (andB) have only the simple intention to convey (or re-
ceive) rather than the extremely complex intentions proposed by Grice,
Strawson, and Schiffer. If my definitions work, this is obviously a distinct
advantage. My point is that there is a kind of division of labor between
the speaker and the game and the ambient game does much of the work. It
may be possible to argue that the somewhat complex beliefs my definitions
require operate like situated beliefs, in that they do not need to be explicit.
As Perry (1986) has argued, the circumstantial nature of action does not
require an agent to have every relevant belief explicitly present in its mind.
We do not need to consider gravity each time we reach for a glass.

It is interesting to examine the connection between these concepts. We
can more or less immediately deduce the following facts:

1. Communication implies meaningC .
2. Communication implies interpretationC .
3. MeaningC and interpretationC do not imply communication.

To see how we get the first two, note that common knowledge of a
fact implies belief that there is common knowledge of the fact. (In fact,
it implies knowledge of common knowledge of the fact.) This is an inter-
esting property of common knowledge. A solution of a game is common
knowledge and as such implies belief.

For the third, note that belief that there is common knowlege does not
imply common knowledge. This is an obvious property of belief.

These results are just as they should be, given our intuitive understand-
ing of them.

I should emphasize that these definitions are intended to be quite gen-
eral and to capture the intuitive concept of communication we all share.
They are not stipulative definitions. The reader is invited to test them
against his or her favorite examples.

14. CONCLUSION

In this paper, I have shown how communication can be modelled by
games and strategic interactions. Perhaps the most important consequence
of this model is that it suggests necessary and sufficient conditions for
communication, meaning, and interpretation.
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