Balance

Suppose you have eight billiard balls. One of them
is defective -- it weighs more than the others.

How do you tell, using a balance, which ball is
defective in two weighings?
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Information Theory

How do you define the information a message carries?

How much information does a message carry? How much of a message is
redundant?
How do we measure information and what are its units?

How do we model a transmitter of messages?
What is the average rate of information a transmitter generates?

How much capacity does a communication channel have (with a given data
format and data frequency)?

Can we remove the redundancy from a message to fill the capacity of a
channel? (lossless compression)
How much can we compress a message and still exactly recover message?

How does noise affect the capacity of a channel?
Can we use redundancy to accurately recover a signal sent over a noisy
line? (error correction)



Information Theory

communication
channel

—» transmitter —» O —> receiver —» destination
(encode) (decode)

Information
source

message signal message

messagel
message?2
message3

noise
source
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symboll

symbol2

symbol3

AND

message l=symboll, symbol2
message2=symbol3, symbol5

Information source selects a Destination decides which message
desired message from a set of possible messages among set of (agreed) possible messages,
OR the information source sent.

selects a sequence of symbols from a set of symbols

to represent a message.



Why are we interested in Markov Models?

We can represent an information source as an engine
creating symbols at some rate according to probabilistic
rules. The Markov model represents those rules as
transition probabilities between symbols.
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In the long term, each symbol has a certain
steady state probability.
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Based on these probabilities, we can define the
amount of information, I, that a symbol carries

and what the average rate of information or entropy,
H, a system generates.



Discrete Markov Chain

Transition Matrix

A Markov system (or Markov process or Markov chain) is a system that can be in one of several
(numbered) states, and can pass from one state to another each time step according to fixed probabilities.

If a Markov system is in state 1, there is a fixed probability, p;;, of it going into state j the next time step, and
p;j is called a transition probability.

A Markov system can be illustrated by means of a state transition diagram, which is a diagram showing
all the states and transition probabilities.

The matrix P whose ijth entry is p;; is called the transition matrix associated with the

system. The entries in each row add up to 1. Thus, for instance, a 2+« 2 transition matrix P
would be set up as in the following figure.

http://people.hofstra.edu/faculty/Stefan_Waner/Real World/Summary8.html



Discrete Markov Chain
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1-step Distribution

Distribution After 1 Step: VP

If v is an initial probability distribution vector and P is the transition matrix for a Markov
system, then the probability vector after 1 step is the matrix product, vP.
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n-steps Distribution

Distribution After 1 Step: VP

If v is an initial probability distribution vector and P is the transition matrix for a Markov
system, then the distribution vector after 1 step is the matrix product, vP.

Distribution After 2 Steps: VvP?
The distribution one step later, obtained by again multiplying by P, is given by

(VP)P = vPZ2,

Distribution After n Steps: vP"

Similarly, the distribution after n steps can be obtained by multiplying v on the right by P n
times, or multiplying v by P".

(VP)PP...P =vP"

The ij" entry in P" is the probability that the system will pass from state i to state j in n steps.



Stationary

What happens as number of steps n goes to infinity?

V P=V, Vss=[Vx Vy V; ]
n+1 equations
Vet v, +v, + .. =1

n unknowns

A steady state probability vector is then given by Vss=[Vi vy Vv, -]

If the higher and higher powers of P approach a fixed matrix P, we
refer to P, as the steady state or long-term transition matrix.

P =v. v v Ves=[Vx Vy V; ...]




Examples

02 08 0
Let P=|04 0 0.6
0.5 05 0

32123...

and V= [02 0.4 0-4] be an initial probability distribution.
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Then the distribution after one step is given by

vP=[02 04 0.4]

02 08 0
04 0 06|=[04 036 0.24]
0.5 05 0

0.2(0.2)-+(0.4)(0.4)+(0.4)(0.5)=0.04+0.16+0.20=0.4



The distribution after one step is given by

0.2 08 0]
vP=[02 04 04]04 0 06|=[04 036 0.24]
0.5 05 0

The two-step distribution one step later is given by

0.2 08 0
vP?>=(vP)P=[0.4 0.36 024]04 0 0.6/=[0.344 0.44 0.216]
05 05 0

To obtain the two-step transition matrix, we calculate

0.2 08 0Jo2 08 01 [036 0.16 0.48]
P*=104 0 06|04 0 06]/=(0.38 062 0
05 05 005 05 0] |03 04 03]

Thus, for example, the probability of going from State 3 to State 1 in two steps is given
by the 3,1-entry in P2, namely 0.3.



The steady state distribution is given by

v P=v —

AN AN

v.+v, +v, =1

v

0.2v, +0.4v +0.5v_ =v,
0.8v, +0.5v_=v,
0.6v, =v,

vty +v =1

v, =[0.354 0.404 0.242]

steady state distribution

[Vx Vy VZ]
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P, =10.354 0.404 0.242
0.354 0404 0.242




Digram probabilities

What are the relative frequencies of the combination of symbols
1j=AA,AB,AC..

. (digram)? What is the joint probability p(1,))?

p(.))=p()p;(j)
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p(A,A)=p(B,C)=0; AA, BC never occurs
p(B,A) occurs most often; 4/15 times

Shannon & Weaver pg.41



Why are we interested in Markov Models?

We can represent an information source as an engine
creating symbols at some rate according to probabilistic
rules. The Markov model represents those rules as
transition probabilities between symbols.
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In the long term, each symbol has a certain
steady state probability.
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Based on these probabilities, we can define the
amount of information, I, that a symbol carries

and what the average rate of information or entropy,
H, a system generates.



Information

We would like to develop a usable measure of the information
we get from observing the occurrence of an event having
probability p . Our first reduction will be to 1ignore any
particular features of the event, and only observe whether or not
it happened. In essence this means that we can think of the
event as the observance of a symbol whose probability of
occurring 1s p. We will thus be defining the information in
terms of the probability p.

An introduction to information theory and entropy-- Tom Carter



Information

We will want our information measure I(p) to have several properties:

1. Information is a non-negative quantity: I(p) < 0.

2. If an event has probability 1, we get no information from the occurrence of the event:

I(1) = 0.

[information is surprise, freedom of choice, uncertainty...]

3. If two independent events occur (whose joint probability is the product of their
individual probabilities), then the information we get from observing the events is the
sum of the two informations:

I(pl »p2) =I(pl) +1(p2). (This is the critical property . . . )

4. We will want our information measure to be a continuous (and, in fact, monotonic)
function of the probability (slight changes in probability should result in slight changes
in information).

An introduction to information theory and entropy-- Tom Carter



Information
I(p) = log,(1/p) = -log, (p), x=y" »log (x)=n

for some positive constant b. The base b determines the units we are using.
log, units of I are bits logz(x)zlog10(x)/log10(2)

Ex. Flip a fair coin (py=0.5, p=0.5)

I flip: Hor T
I= -log,(p)=-log,(0.5)=log,(2)=1 bit

n flips: HTTH...n times

I=-log,(pppp ...)=-log,(p")
— -nlogz(p) = nlogz(l/p)= =N 10g2(2)
= n bits Additive property

-log,(p,py)= -log,(p;) -log,(p,)

Also think of switches
1 switch = 1 bit (2!=2 possibilities) _
3 switches = 3bits (2° =8 possibilities) I1 and Iz— I1 + Iz



Ex. Flip an unfair coin (py=0.3, py=0.7)
1 flip: H

I=-log,(py)= -log,(0.3)=1.737 bit
less likely, more info

I flip: T more likely, less info
I=-log,(pp)=-l0og,(0.7)=0.515 bit

5 thips: HTTHT

I=-log,(py Pt Pt Pu P1)
= -10g,(0.320.7 0.7 0.3 20.7) =-log, (0.031)

= 5.018 bits 1.004 bits/tlip

5 thips: THTTT

I=-log,(pr Py Pr PrP7)
= -10g,(0.7¢0.3 0.7 0.7 *0.7) = -log, (0.072)

= 3.795 bits 0.759 bits/tlip



Entropy

Ex. Flip an unfair coin (py=0.3, py=0.7)
1 thp:
I,= 1.737 bits,
[.=0.515 bits

So what’s the average bits/tlip for n flips as n — o ?

Use a weighted average based on probability of information per flip.

Call this average information/flip, Entropy H

H=py I + p1lt
=py [-1log,(pr)] + prl-log,(pp)]

=0.3(1.737 bits) + 0.7(0.515 bits)
-0.822 bits



Entropy

Average information/symbol called Entropy H

H = _2 Di log(pi)

H(X,Y)=H(X)+H(Y) H also obeys additive property
if events are independent.

For unfair coin, py=p, pr=(1-p)

uncertainty. H (bits)

1.0
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0=

\
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The average information per symbol is greatest when
the symbols equiprobable.



Balance

Suppose you have eight billiard balls. One of them
is defective -- it weighs more than the others.

How do you tell, using a balance, which ball is
defective in two weighings?
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Only allowed 2 weighings. _ Wrong way

o i 50/50 split
AT A
VAR | VAR

£ - .

Weighing #1 e
1 2 3 4 > -
2000 90000
Heavy

Weighing #2

1 2 !

X | O 9

Heavy

Which is heavier, 1 or 2?



Wrong way (7

50/50 split e =
ﬁ/ f\%

Weighing #1 - f..ii?: ~ Only allowed 2 weighings.
1 2 5 6 7 8

Q9 0 0 @999
Heavy

Weighing #2

I 2
Q@9
Heavy

Which is heavier, 1 or 2?



Wrong way
50/50 split

Weighing #1

.

. Balance has 3 states

=
/\
AR

'xg__ __f,ff

— A
f_r"‘*_.

QOO 9

HeavyL

Weighing #2

Q9

HeavyL

Y,

fﬁ Heavy L, Heavy R, Equal
/ % 50/50 split doesn’t let all

&~ 3 states be equally probable

Which is heavier, 1 or 2?



Optimal way Case #1

~1/3,~1/3,~1/3 split <
Now, HL.HR B o\ WA
Almost equiprobable ﬁ 7\
Weighing #1 S I < .
(1.2.3) vs. (4.5.6) Py Only allowed 2 weighings.
7
1 2 3 4 5 6
200 200 %
HeavyL
Weighing #2
1 vs?2 { o
0 HeavyL

2 1s the odd ball



Optimal way Case #1b

~1/3,~1/3,~1/3 split o
Now, HL.HR,B o\ W R
Almost equiprobable ﬁ 7\
- 1 x%h @ I i QG /
Weighing #1 ‘“;""",__:; }“‘ Only allowed 2 weighings.
(1,2,3) vs. (4,5,6) R .
3 5 6
200 o0 %
HeavyL
Weighing #2
1vs.2 1 2 3
Balanced

3 1s the odd ball



Optimal way Case #2

~1/3,~1/3,~1/3 split (7
Now, HL.HR B o\ WA
Almost equiprobable ﬁ 7\
- 1. xg </ : [ /
Weighing #1 - f“ 7~ Only allowed 2 weighings.
(19293) VS. (49576) o —-—— s 7

%

20 @ 200

HeavyR
Weighing #2
4vs.5 4 5
0 HeavyR

5 1s the odd ball



Optimal way Case #3
~1/3,~1/3,~1/3 split Y,

Now, HL,HR,B o\ WA
Almost equiprobable ﬁ 7\

Weighing #1 L I

el e

(1,2,3) vs. (4,5,6) P

@9 O

Only allowed 2 weighings.
7

4 5 6 .

QP9 '

Balanced

Weighing #2
7 vs. 8 7 8

d J

HeavyR
8 1s the odd ball



Optimal way Case #3

~1/3,~1/3,~1/3 split < (>

Now, HL,HR,B ,\ YR

Almost equiprobable ﬁ 7\
Weighing #1 S < < o
(1,2.3) vs (4.5.6) P G Only allowed 2 7welgh1ngs.

L2 3 4 5 6 -

20 @ " Q99 O
Weighing #2
7 vs 8 7 8

Heavy
0 8 1s the odd ball o

Try to design your experiments to maximize the information
extracted from each measurement by making possible outcomes
equally probable.




Shannon Fano

ZIP implosion algorithm uses this

Compression
Split symbols so probabilities halved

Ex. “How much wood would a woodchuck chuck” 31 characters

Frequency chart

—® g3 A~ E g 500

0.194
0.161
0.129
0.129
0.129
0.097
0.065
0.032
0.032
0.032

ASCII 7bits/character, so 217 bits
H = _Epi log(pi)

H=-(0.194 10g,0.194 + 0.161 log,0.161 +...)
H=2.706 bits/symbol, so 83.7 bits for sentence

o0 has -log,0.194=2.37 bits of information
1 has -10g,0.032=4.97 bits of information

The rare letters carry more information



Shannon Fano

Ex. “How much wood would a woodchuck chuck”

Frequency chart

—® g FAesS g 500

0.194
0.161
0.129

Compression

Split symbols so probabilities halved
(or as close as possible)

0.194

0.484

0.129
0.129
0.097
0.065
0.032
0.032
0.032

0.516

0.161
0.129

0.129
0.129

0.258  0.097
0.161 0.065

0.096

31 characters

0.032

0.064 0.032

0.032



Shannon Fano

Compression
Split symbols so probabilities halved

Ex. “How much wood would a woodchuck chuck” 31 characters

Frequency chart

—® g FAesS g 500

0.194
0.161
0.129

1

0.129
0.129
0.097
0.065
0.032
0.032
0.032

0

11
— 101
10" 760
011
01 010
00 001
000 0001

0000

00001

00000 000001
000000




Shannon Fano

Compression

Split symbols so probabilities halved

Ex. “How much wood would a woodchuck chuck” 31 characters

“Prefix free - one code is never the start of another code”

Frequency chart

11

101

100
011
010
001
0001
00001
000001
000000
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C
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m
a
1

0.194
0.161
0.129

1

0.129
0.129
0.097
0.065
0.032
0.032
0.032

0

11
— 101
10" 760
011
01 010
00 001
000 0001

0000 00001
00000 000001

000000



Shannon Fano

Compression
Split symbols so probabilities halved

Ex. “How much wood would a woodchuck chuck” 31 characters

Encoding chart

11

101

100
011
010
001
0001
00001
000001
000000

)

C
h
W
u
d
k
m
a
1

p

0.194
0.161
0.129
0.129
0.129
0.097
0.065
0.032
0.032
0.032

F=
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6(2)+5(3)+4(3)+4(3)+4(3)+
3(3)+2(4)+1(5)+1(6)+1(6)
=97 bits

O7bits/31 characters
=3.129 bits/character

H=2.706 bits/symbol



Compression

Shannon Fano

Ex. “How much wood would a woodchuck chuck” 31 characters

Decoding chart 10011011000010101011000111111001 32
11 0 h o w mu ¢ h w ood
101 c 011110100000000010000010111111001101 36
100 h wou |1 d a w o o d c
011 w 10001010100011011000101010001 29
010 u h u ¢ k ¢ hu ¢ k

001 d 97bits
0001  k

00001 m

000001 a

000000 1



Shannon Fano

Compression

0110000010000000001000001000010000010010010101010001

Decoding chart

11

101

100
011
010
001
0001
00001
000001
000000

)

C
h
W
u
d
k
m
a
1

52bits



Shannon Fano

Compression

01qoooooqoooooqoooqoooooqooooqoooooqooq00q01q10q0001

Decoding chart

11

101

100
011
010
001
0001
00001
000001
000000

)

C
h
W
u
d
k
m
a
1

d 4 u

52bits/ 12 characters = 4.333 bits/character

greater than before
because character
frequencies are different



Huffman Coding

Add two lowest probabilities
group symbols

Resort

Repeat

JPEG, MP3

Ex. “How much wood would a woodchuck chuck”
Frequency chart

o 0.149 0 0.149 0 0.149 o 0.149
C 0.161 C 0.161 C 0.161 C 0.161
h 0.129 h 0.129 h 0.129 almk 0.161
W 0.129 w 0.129 W 0.129 0.129
u 0.129 u 0.129 u 0.129 // w 0.129
d 0.097 d 0.097 d 0.097// u 0.129
k 0.065 k 0.065 alm 0096/ d 0.097
o 003 al 0064k 0.065

. 0,0327?11 0.032

| 0.032
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Huffman Coding

Ex. “How much wood would a woodchuck chuck”

0.322  udo
0.258/‘ almkc
0.226 " | hw
0.194

0.194 0
0.161 c
0.129 almk
0.129 h
0.129 w
0.097 u
0.096 d

0.226
0.194
0.161
0.161
0.129
0.129

0.420 almkchw 0.580 > almkchwudo 1
0.420

0.322 7 udo
0.258



5 ~/Aes 500

a 110111
1 110110

hw 10
ud
0

C
almk

111
110

Huffman Coding

Ex. “How much wood would a woodchuck chuck”

o o 0 ud 01
C C ¢ 110 0

h h almk C

W W h almk
u u W h 101
d d w 100
k alm 1101

A 11011 / K 1100

fm 11010

almke ! udo 0 / almkchw ! 4; almkchwudo 1
hw almkc 11 / udo 0

ud 01 4 hw 10

0 00

backward pass
assign codes



Huffman Coding

Ex. “How much wood would a woodchuck chuck”

0 0 0 0 ud
C C C C 0
h h almk C
h
W w W h almk
u u w h 101
u
d d d w100
k k X alm
m al ¢/ k 1100
a 110111 f m 11010
1 110110

hw almkc udo / almkchw 4; almkchwudo 1
ud hw almkc / udo

0 ud hw

c 111 o 00

e tind codes for single

letters



Huffman Coding

Ex. “How much wood would a woodchuck chuck”

Huffman

00
111
100

6

5

4

101 4
011 4
010 3
1100 2
11010
1

1

a 110111
[ 110110

5 ~/Aas g 500

Notice o has 2 bits;
a,l have 6 bits

6(2)+5(3)+4(3)+4(3)+4(3)+
3(3)+2(4)+1(5)+1(6)+1(6)
=97 bits

O7bits/31 characters
=3.129 bits/character

H=2.706 bits/symbol

Shanon Fano

11 0
101 C
100 h
011 W
010 u
001 d
0001 k
00001 m
000001 a
000000 1

97bits/31 characters
=3.129 bits/character



Huffman's algorithm is a method for building an extended
binary tree of with a minimum weighted path length from a set
of given weights.

31
Huffman
0 00 6 18
c 111 5
n o 100 4 A 13
w101 4 10 8
u 011 4 5
d 010 3 v \
k 1100 2 3 el ’
m 11010 y
a 110111 1 2
1 110110 1 /N
111
o d
10110 | g m k ¢ w h 00 u
.1 1 25 4 4 6 3 4

Frequencies™(edges to root)= weighted path length



Huffman's algorithm is a method for building an extended
binary tree of with a minimum weighted path length from a set
of given weights.

Huffman
00 6
111 5
100 4
101 4
011 4
010 3
1100 2
11010

a 110111 1

1 110110 1

110110 1 a
L1 1 4

5 ~/Aes 500

Each branch adds a bit. Minimize (#branches * frequency)
Least frequent symbol further away. More frequent, closer.



MP-3

Huffman coding is used in the final step of creating an MP3 file. The MP3 format
uses frames of 1152 sample values. If the sample rate is 44.1kHz, the time that
each frame represents is ~26ms. The spectrum of this 1152-sample frame is
spectrally analyzed and the frequencies are grouped in 32 channels (critical bands).
The masking effects within a band are analyzed based on a psycho-acoustical
model. This model determines the tone-like or noise-like nature of the masking in
each channel and then decides the effect of each channel on its neighboring bands.
The masking information for all of the channels in the frame is recombined into a
time varying signal. This signal is numerically different from the original signal but
the difference is hardly noticeable aurally. The signal for the frame is then Huffman

coded. A sequence of these frames makes up an MP3 file.
http://webphysics.davidson.edu/faculty/dmb/py115/huffman_coding.htm



