
Balance
Suppose you have eight billiard balls. One of them
is defective -- it weighs more than the others.
How do you tell, using a balance, which ball is
defective in two weighings?



Information Theory
How do you define the information a message carries?

How much information does a message carry? How much of a message is
redundant?
How do we measure information and what are its units?

How do we model a transmitter of messages?
What is the average rate of information a transmitter generates?

How much capacity does a communication channel have (with a given data
format and data frequency)?

Can we remove the redundancy from a message to fill the capacity of a
channel? (lossless compression)
How much can we compress a message and still exactly recover message?

How does noise affect the capacity of a channel?
Can we use redundancy to accurately recover a signal sent over a noisy
line? (error correction)



Information Theory

message1
message2
message3
…

OR

symbol1
symbol2
symbol3
…

Information
source

transmitter 
(encode)

receiver
(decode)

destination

message signal message

noise
source

Information source selects a
 desired message from a set of possible messages 
OR 
selects a sequence of symbols from a set of symbols
to represent a message. 

communication 
channel

AND
message1=symbol1, symbol2
message2=symbol3, symbol5

Destination decides which message
among set of (agreed) possible messages,
the information source sent.



Why are we interested in Markov Models?
We can represent an information source as an engine
creating symbols at some rate according to probabilistic
rules. The Markov model represents those rules as
transition probabilities between symbols.

Based on these probabilities, we can define the 
amount of information, I, that a symbol carries
and what the average rate of information or entropy,
H, a system generates. 

In the long term, each symbol has a certain 
steady state probability.
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Discrete Markov Chain

http://people.hofstra.edu/faculty/Stefan_Waner/RealWorld/Summary8.html

Transition Matrix

A Markov system (or Markov process or Markov chain) is a system that can be in one of several
(numbered) states, and can pass from one state to another each time step according to fixed probabilities.

If a Markov system is in state i, there is a fixed probability, pij, of it going into state j the next time step, and
pij is called a transition probability.

A Markov system can be illustrated by means of a state transition diagram, which is a diagram showing
all the states and transition probabilities.

The matrix P whose ijth entry is pij is called the transition matrix associated with the
system. The entries in each row add up to 1. Thus, for instance, a 2 2 transition matrix P
would be set up as in the following figure.



Discrete Markov Chain
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1-step Distribution
Distribution After 1 Step:   vP
If v is an initial probability distribution vector and P is the transition matrix for a Markov
system, then the probability vector after 1 step is the matrix product, vP.
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n-steps Distribution
Distribution After 1 Step:   vP
If v is an initial probability distribution vector and P is the transition matrix for a Markov
system, then the distribution vector after 1 step is the matrix product, vP.

Distribution After 2 Steps:   vP2

The distribution one step later, obtained by again multiplying by P, is given by

 (vP)P = vP2.

Distribution After n Steps:   vPn

Similarly, the distribution after n steps can be obtained by multiplying v on the right by P n
times, or multiplying v by Pn.

 (vP)PP…P = vPn

The ijth entry in Pn is the probability that the system will pass from state i to state j in n steps.



Stationary

vx + vy + vz + . . .=1

A steady state probability vector is then given by

If the higher and higher powers of P approach a fixed matrix     , we
refer to      as the steady state or long-term transition matrix.

What happens as number of steps n goes to infinity?

VssP= Vss
vss=[vx vy vz …]

vss=[vx vy vz …]

vss=[vx vy vz …]

n+1 equations
n unknowns
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Examples

 Let                                      and                                be an initial probability distribution.
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The distribution after one step is given by  

The two-step distribution one step later is given by

To obtain the two-step transition matrix, we calculate

Thus, for example, the probability of going from State 3 to State 1 in two steps is given
by the 3,1-entry in P2, namely 0.3.
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vx + vy + vz =1

The steady state distribution is given by
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p(i,j) p(A,A)=p(B,C)=0; AA, BC never occurs

p(B,A) occurs most often; 4/15 times

Digram probabilities

p(i,j)=p(i)pi(j)

What are the relative frequencies of the combination of symbols
ij=AA,AB,AC… (digram)?  What is the joint probability p(i,j)?



Why are we interested in Markov Models?
We can represent an information source as an engine
creating symbols at some rate according to probabilistic
rules. The Markov model represents those rules as
transition probabilities between symbols.

Based on these probabilities, we can define the 
amount of information, I, that a symbol carries
and what the average rate of information or entropy,
H, a system generates. 

In the long term, each symbol has a certain 
steady state probability.
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Information
We would like to develop a usable measure of the information
we get from observing the occurrence of an event having
probability p . Our first reduction will be to ignore any
particular features of the event, and only observe whether or not
it happened. In essence this means that we can think of the
event as the observance of a symbol whose probability of
occurring is p. We will thus be defining the information in
terms of the probability p.

An introduction to information theory and entropy-- Tom Carter 



Information
W �e � �w �i �l �l � �w �a �n �t � �o �u �r � �i �n �f �o �r �m �a �t �i �o �n � �m �e �a �s �u �r �e � �I �( �p �) � �t �o � �h �a �v �e � �s �e �v �e �r �a �l � �p �r �o �p �e �r �t �i �e �s �:
1 �. � �I �n �f �o �r �m �a �t �i �o �n � �i �s � �a � �n �o �n �- �n �e �g �a �t �i �v �e � �q �u �a �n �t �i �t �y �: � �I �( �p �) � ≤ 0 �. � �

2�.� �I�f� �a�n� �e�v�e�n�t� �h�a�s� �p�r�o�b�a�b�i�l�i�t�y� �1�,� �w�e� �g �e �t � �n �o � �i �n �f �o �r �m �a �t �i �o �n � �f �r �o �m � �t �h �e � �o �c �c �u �r �r �e �n �c �e � �o �f � �t �h �e � �e �v �e �n �t �: � �
    I�(�1�)� �=� �0�.� �

3�.� �I�f� �t�w�o� �i�n�d�e�p�e�n�d�e�n�t� �e�v�e�n�t�s� �o�c�c�u�r� �(�w�h�o�s�e� �j �o �i �n �t � �p �r �o �b �a �b �i �l �i �t �y � �i �s � �t �h �e � �p �r �o �d �u �c �t � �o �f � �t �h �e �i �r �
�i �n �d �i �v �i �d �u �a �l � �p �r �o �b �a �b �i �l �i �t �i �e �s �) �, � �t �h �e �n � �t �h �e � �i �n �f �o �r �m �a �t �i �o �n � �w �e � �g �e �t � �f �r �o �m � �o �b �s �e �r �v �i �n �g � �t �h �e � �e �v �e �n �t �s � �i �s � �t �h �e �
�s �u �m � �o �f � �t �h �e � �t �w�o� �i �n �f �o �r �m �a �t �i �o �n �s �: �

    �I�(�p�1� •� �p�2�)� �=� �I�(�p�1�)� �+�I�(�p�2�)�.� �(�T�h�i�s� �i�s� �t�h�e� �c�r�i�t�i�c�a�l� �p�r�o�p�e�r�t�y� �.� �.� �.� �)�

4 �. � �W �e � �w �i �l �l � �w �a �n �t � �o �u �r � �i �n �f �o �r �m �a �t �i �o �n � �m �e �a �s �u �r �e � �t �o � �b �e � �a � �c �o �n �t �i �n �u �o �u �s � �( �a �n �d �, � �i �n � �f �a �c �t �, � �m �o �n �o �t �o �n �i �c �) �
�f �u �n �c �t �i �o �n � �o �f � �t �h �e� �p �r �o �b �a �b �i �l �i �t �y � �( �s �l �i �g �h �t � �c �h �a �n �g �e �s � �i �n � �p �r �o �b �a �b �i �l �i �t �y � �s �h �o �u �l �d � �r �e �s �u �l �t � �i �n � �s �l �i �g �h �t � �c �h �a �n �g �e �s �
�i �n � �i �n �f �o �r �m �a �t �i �o �n �) �. �

An introduction to information theory and entropy-- Tom Carter 

[information is surprise, freedom of choice, uncertainty…]



Information
I�(�p�)� �=� �l �o �g �b �( �1 �/ �p �) � �= � - �l �o �g�b �( �p �) �, �

f �o �r � �s �o �m �e � �p �o �s �i �t �i �v �e � �c �o �n �s �t �a �n �t � �b �. � �T �h �e � �b �a �s �e � �b � �d�e�t�e�r�m�i�n�e�s� �t �h �e � �u �n �i �t �s � �w �e � �a �r �e� �u �s �i �n �g.
log �2 � � units of I are bits

Ex. Flip a fair coin (pH=0.5, pT=0.5 ) 
1 flip: H or T
     I= -log2(p)= -log2(0.5)= log2(2)=1 bit

n flips: HTTH…n times
    I= -log2(p p p p …)= -log2(pn)
     = -nlog2(p) = nlog2(1/p)= =n log2(2)
     = n bits Additive property

-log2(p1p2)= -log2(p1) -log2(p2)

I1and I2= I1+ I2

log2(x)=log10(x)/log10(2)

x=yn     logy(x)=n

Also think of switches
1 switch = 1 bit (21=2 possibilities)
3 switches = 3bits (23 =8 possibilities)



Ex. Flip an unfair coin (pH=0.3, pT=0.7 ) 
1 flip: H 
   I= -log2(pH)= -log2(0.3)= 1.737 bit

5 flips: HTTHT
    I= -log2(pH pT pT pH pT)
     = -log2(0.3•0.7 • 0.7 • 0.3 • 0.7) = -log2 (0.031)
     = 5.018 bits  

1 flip: T 
   I= -log2(pT)= -log2(0.7)= 0.515 bit

less likely, more info
more likely, less info

5 flips: THTTT
    I= -log2(pT pH pT pT pT)
     = -log2(0.7•0.3 • 0.7 • 0.7 • 0.7) = -log2 (0.072)
     = 3.795 bits

1.004 bits/flip

0.759 bits/flip



Entropy

So what’s the average bits/flip for n flips as             ?

Ex. Flip an unfair coin (pH=0.3, pT=0.7 ) 
1 flip: 
IH= 1.737 bits,
IT= 0.515 bits

Use a weighted average based on probability of information per flip.

€ 

n →∞

H=pH IH + pTIT 
   =pH [-log2(pH)] + pT[-log2(pT)]
   
   =0.3(1.737 bits) + 0.7(0.515 bits)
   =0.822 bits

Call this average information/flip, Entropy H



Entropy

H(X,Y)=H(X)+H(Y)

The average information per symbol is greatest when 
the symbols equiprobable.

Average information/symbol called Entropy H

€ 

H = − pi log pi( )
i
∑

H also obeys additive property
if  events are independent.

For unfair coin, pH=p, pT=(1-p) 



Balance
Suppose you have eight billiard balls. One of them
is defective -- it weighs more than the others.
How do you tell, using a balance, which ball is
defective in two weighings?



Heavy

Heavy

1 2 3 4 5 6 7 8

1 2 3 4

Weighing #1

Weighing #2

Which is heavier, 1 or 2?

Only allowed 2 weighings.
Wrong way
50/50 split



Heavy

Heavy

1 2 3 4 5 6 7 8

1 2 3 4

Weighing #1

Weighing #2

Which is heavier, 1 or 2?

Only allowed 2 weighings.

Wrong way
50/50 split



HeavyL

HeavyL

1 2 3 4 5 6 7 8

1 2 3 4

Weighing #1

Weighing #2

Which is heavier, 1 or 2?

Wrong way
50/50 split

Balance has 3 states
Heavy L, Heavy R, Equal

50/50 split doesn’t let all
3 states be equally probable



HeavyL

HeavyL

1 2 3 4 5 6
7
8

1 2 3

Weighing #1
(1,2,3) vs. (4,5,6)

Weighing #2
1 vs 2

2 is the odd ball

Only allowed 2 weighings.

Optimal way
~1/3,~1/3,~1/3 split

Case #1

Now, HL,HR,B
Almost equiprobable



HeavyL

Balanced

1 2 3 4 5 6
7
8

1 2 3

Weighing #1
(1,2,3) vs. (4,5,6)

Weighing #2
1 vs. 2

3 is the odd ball

Only allowed 2 weighings.

Optimal way
~1/3,~1/3,~1/3 split

Case #1b

Now, HL,HR,B
Almost equiprobable



HeavyR

HeavyR

1 2 3 4 5 6
7

8

4 5 6

Weighing #1
(1,2,3) vs. (4,5,6)

Weighing #2
4 vs. 5

5 is the odd ball

Only allowed 2 weighings.

Optimal way
~1/3,~1/3,~1/3 split

Case #2

Now, HL,HR,B
Almost equiprobable



Balanced

HeavyR

1 2 3 4 5 6
7

8

7 8

Weighing #1
(1,2,3) vs. (4,5,6)

Weighing #2
7 vs. 8

8 is the odd ball

Only allowed 2 weighings.

Optimal way
~1/3,~1/3,~1/3 split

Case #3

Now, HL,HR,B
Almost equiprobable



Balanced

Heavy

1 2 3 4 5 6
7

8

7 8

Weighing #1
(1,2,3) vs (4,5,6)

Weighing #2
7 vs 8

8 is the odd ball

Only allowed 2 weighings.

Optimal way
~1/3,~1/3,~1/3 split

Case #3

Now, HL,HR,B
Almost equiprobable

Try to design your experiments to maximize the information
extracted from each measurement by making possible outcomes
equally probable.



Compression
Shannon Fano Split symbols so probabilities halved

Ex. “How much wood would a woodchuck chuck” 31 characters

ASCII 7bits/character, so 217 bits
Frequency chart
o 0.194
c 0.161
h 0.129
w 0.129
u 0.129
d 0.097
k 0.065
m 0.032
a 0.032
l  0.032

€ 

H = − pi log pi( )
i
∑

H=-(0.194 log20.194 + 0.161 log20.161 +…)
H=2.706 bits/symbol, so 83.7 bits for sentence

o has -log20.194=2.37   bits of information
l  has -log20.032= 4.97  bits of information
The rare letters carry more information

ZIP implosion algorithm uses this



Compression
Shannon Fano Split symbols so probabilities halved

(or as close as possible)
Ex. “How much wood would a woodchuck chuck” 31 characters

Frequency chart
o 0.194
c 0.161
h 0.129
w 0.129
u 0.129
d 0.097
k 0.065
m 0.032
a 0.032
l  0.032

0.484
0.516

0.194
0.29

0.258

0.258
0.161

0.161
0.129
0.129
0.129

0.097
0.065
0.096 0.032

0.064 0.032
0.032



Compression
Shannon Fano Split symbols so probabilities halved

Ex. “How much wood would a woodchuck chuck” 31 characters

Frequency chart
o 0.194
c 0.161
h 0.129
w 0.129
u 0.129
d 0.097
k 0.065
m 0.032
a 0.032
l  0.032

1

0

11

10
101
100

01
00

011
010

001
000 0001

0000 00001
00000 000001

000000



Compression
Shannon Fano Split symbols so probabilities halved

Ex. “How much wood would a woodchuck chuck” 31 characters

Frequency chart
o 0.194
c 0.161
h 0.129
w 0.129
u 0.129
d 0.097
k 0.065
m 0.032
a 0.032
l  0.032

1

0

11

10
101
100

01
00

011
010

001
000 0001

0000 00001
00000 000001

000000

11
101
100
011
010
001
0001
00001
000001
000000

“Prefix free - one code is never the start of another code”



Compression
Shannon Fano Split symbols so probabilities halved

Ex. “How much wood would a woodchuck chuck” 31 characters

Encoding chart
o 0.194  6
c 0.161 5
h 0.129 4
w 0.129 4
u 0.129 4
d 0.097 3
k 0.065 2
m 0.032 1
a 0.032 1
l  0.032 1

p #

6(2)+5(3)+4(3)+4(3)+4(3)+
3(3)+2(4)+1(5)+1(6)+1(6)
=97 bits

97bits/31 characters
=3.129 bits/character

H=2.706 bits/symbol

11
101
100
011
010
001
0001
00001
000001
000000



Compression
Shannon Fano

Ex. “How much wood would a woodchuck chuck” 31 characters

Decoding chart
o 
c 
h 
w 
u 
d 
k 
m 
a 
l  

10011011000010101011000111111001
 h     o    w     m   u    c    h     w    o   o   d
011110100000000010000010111111001101
   w   o  u       l     d     a     w   o    o    d    c
10001010100011011000101010001
  h   u     c     k     c     h   u    c     k

32

36

29

97bits

11
101
100
011
010
001
0001
00001
000001
000000



Compression
Shannon Fano

Decoding chart
o 
c 
h 
w 
u 
d 
k 
m 
a 
l  

52bits

0110000010000000001000001000010000010010010101010001

11
101
100
011
010
001
0001
00001
000001
000000



Compression
Shannon Fano

Decoding chart
o 
c 
h 
w 
u 
d 
k 
m 
a 
l  

52bits/ 12 characters = 4.333 bits/character

0110000010000000001000001000010000010010010101010001
w a l k a m a d d u c k

greater than before
because character
frequencies are different

11
101
100
011
010
001
0001
00001
000001
000000



Huffman Coding

Ex. “How much wood would a woodchuck chuck” 
Frequency chart
o 0.149
c 0.161
h 0.129
w 0.129
u 0.129
d 0.097
k 0.065
m 0.032
a 0.032
l  0.032

o 0.149
c 0.161
h 0.129
w 0.129
u 0.129
d 0.097
k 0.065
al 0.064
m 0.032

Add two lowest probabilities
group symbols
Resort
Repeat

o 0.149
c 0.161
h 0.129
w 0.129
u 0.129
d 0.097
alm 0.096
k 0.065

o 0.149
c 0.161
almk 0.161
h 0.129
w 0.129
u 0.129
d 0.097

JPEG, MP3



Huffman Coding
Ex. “How much wood would a woodchuck chuck” 

o 0.194
c 0.161
h 0.129
w 0.129
u 0.129
d 0.097
k 0.065
m 0.032
a 0.032
l  0.032

o 0.194
c 0.161
h 0.129
w 0.129
u 0.129
d 0.097
k 0.065
al 0.064
m 0.032

o  0.194 
c 0.161
h 0.129
w 0.129
u 0.129
d 0.097
alm 0.096
k 0.065

o 0.194
c 0.161
almk 0.161
h 0.129
w 0.129
u 0.129
d 0.097

ud 0.226
o 0.194
c 0.161
almk 0.161
h 0.129
w 0.129

hw 0.258
ud 0.226
o 0.194
c 0.161
almk 0.161

almkc 0.322
hw 0.258
ud 0.226
o 0.194

udo 0.420
almkc 0.322
hw 0.258

almkchw 0.580
udo 0.420

almkchwudo 1



Huffman Coding
Ex. “How much wood would a woodchuck chuck” 

o 
c 
h 
w 
u 
d 
k 
m 
a 
l  

o 
c 
h 
w 
u 
d 
k 
al
m 

o  
c 
h 
w 
u 
d 
alm
k 

o 
c 
almk
h 
w 
u 
d 

ud 
o 
c 
almk
h 
w 

hw 
ud 
o 
c 
almk

almkc 
hw 
ud 
o 

udo 
almkc 
hw 

almkchw 
udo 

almkchwudo 1

00111

101
100011

010

1100
11010110111

110110

0

1

10

11

01

011

110

10

01

110

1101
11011

backward pass
assign codes 



Huffman Coding
Ex. “How much wood would a woodchuck chuck” 

o 
c 
h 
w 
u 
d 
k 
m 
a 
l  

o 
c 
h 
w 
u 
d 
k 
al
m 

o  
c 
h 
w 
u 
d 
alm
k 

o 
c 
almk
h 
w 
u 
d 

ud 
o 
c 
almk
h 
w 

hw 
ud 
o 
c 
almk

almkc 
hw 
ud 
o 

udo 
almkc 
hw 

almkchw 
udo 

almkchwudo 1

00111

101
100011

010

1100
11010110111

110110

find codes for single
letters 



Huffman Coding
Ex. “How much wood would a woodchuck chuck” 

o
c
h
w
u
d
k
m
a
l

00
111

101

100

011
010
1100
11010

110111
110110

Notice o has 2 bits; 
a,l have 6 bits

Shanon Fano
o 
c 
h 
w 
u 
d 
k 
m 
a 
l  

Huffman
6(2)+5(3)+4(3)+4(3)+4(3)+
3(3)+2(4)+1(5)+1(6)+1(6)
=97 bits

97bits/31 characters
=3.129 bits/character

H=2.706 bits/symbol

6
5
4
4
4
3
2
1
1
1

97bits/31 characters
=3.129 bits/character

11
101
100
011
010
001
0001
00001
000001
000000



Huffman's algorithm is a method for building an extended
binary tree of with a minimum weighted path length from a set
of given weights.

o
c
h
w
u
d
k
m
a
l

00
111

101

100

011
010
1100
11010

110111
110110

Huffman
6
5
4
4
4
3
2
1
1
1

al m k d uc o
w h

65 44 42111

2

3

5

3

10
8

18

13

31

110110

111

00

Frequencies*(edges to root)= weighted path length

7



Huffman's algorithm is a method for building an extended
binary tree of with a minimum weighted path length from a set
of given weights.

o
c
h
w
u
d
k
m
a
l

00
111

101

100

011
010
1100
11010

110111
110110

Huffman
6
5
4
4
4
3
2
1
1
1

al m k d uc o
w h

65 44 42111

2

3

5

3

10
8

18

13

31

110110

111

00

Each branch adds a bit.  Minimize (#branches * frequency)
Least frequent symbol further away. More frequent, closer.

7



MP-3

Huffman coding is used in the final step of creating an MP3 file.  The MP3 format
uses frames of 1152 sample values.  If the sample rate is 44.1kHz, the time that
each frame represents is ~26ms.  The spectrum of this 1152-sample frame is
spectrally analyzed and the frequencies are grouped in 32 channels (critical bands). 
The masking effects within a band are analyzed based on a psycho-acoustical
model.  This model determines the tone-like or noise-like nature of the masking in
each channel and then decides the effect of each channel on its neighboring bands. 
The masking information for all of the channels in the frame is recombined into a
time varying signal.  This signal is numerically different from the original signal but
the difference is hardly noticeable aurally.  The signal for the frame is then Huffman
coded.  A sequence of these frames makes up an MP3 file.
http://webphysics.davidson.edu/faculty/dmb/py115/huffman_coding.htm


