# Thirteen ways of looking at a default

MAS.622J Final Project - Prosper.com

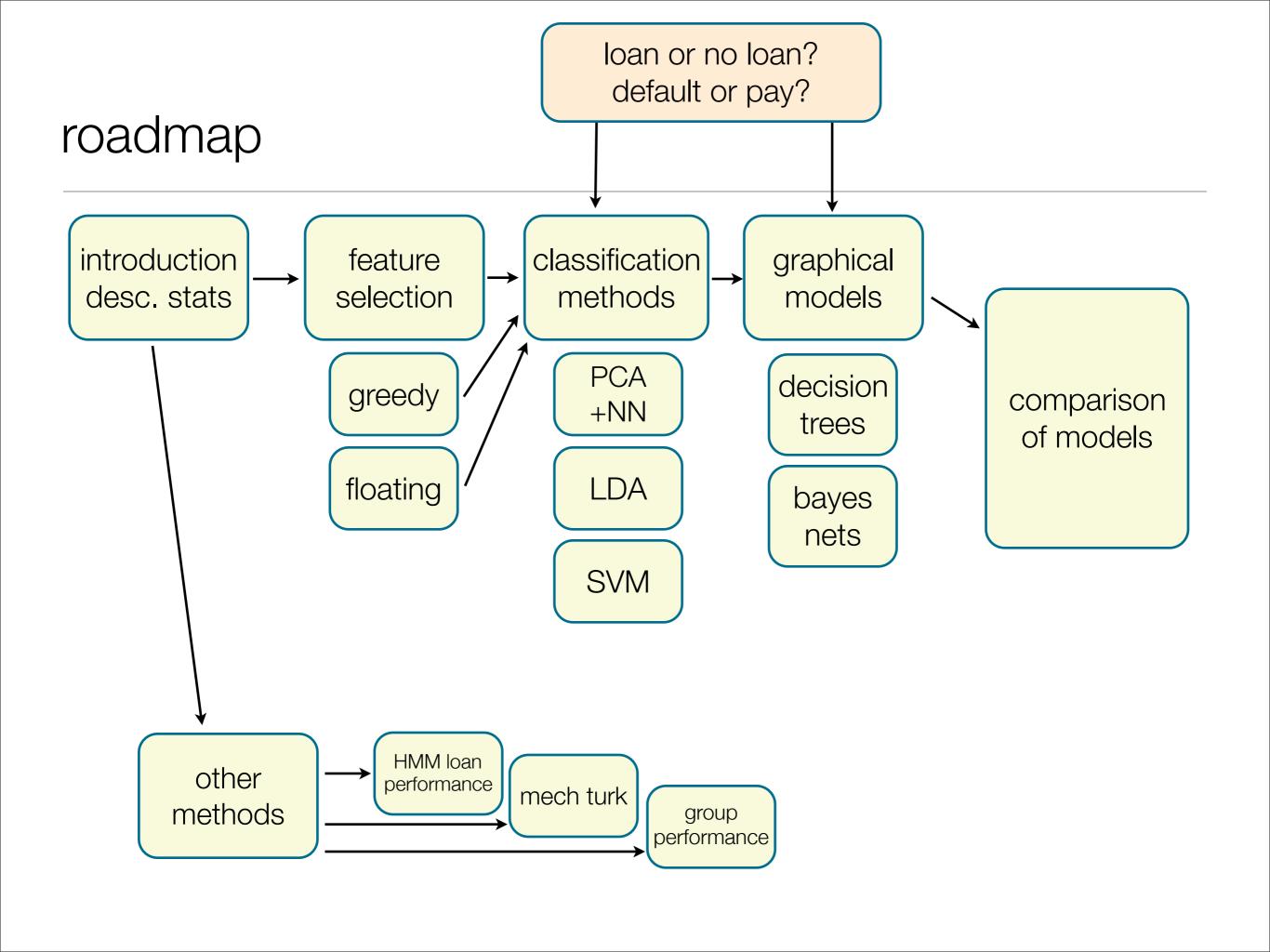
Charlie deTar
Coco Krumme
Ernesto Martinez-Villalpando
Matt Aldrich

## review of questions

- What is the likelihood of a listing becoming a loan?
- What is the likelihood of a loan being paid on time?
- Which features best predict these outcomes?

## why this is important

- Borrowers want to maximize likelihood of getting a loan, minimize interest rate
- Lenders want to invest in loans that maximize returns, minimize probability of default or late payment
- Prosper.com wants to maximize revenues by increasing loan conversion, decreasing default rate
- The research questions are deep: is peer-to-peer lending a viable model? How much do social factors matter? How do lenders make decisions? What models best capture loan dynamics? Can peer-to-peer be modeled with the same precision as bank loans? How can human classification aid machine learning algorithms? etc etc



Charlie De Niro Matt Stiller Ernesto Hoffman Coco Streissand





UNIVERSAL PICTURES AND DREAMWORKS PICTURES PRESENT A TRIBECA / EVERYMAN PICTURES PRODUCTION A JAY FOACH FUM
ROBERT DENIED BEN STILLER DUSTIN HOFFMAN AND BARBRA STRESAND WEET THE FOCKER'S BYTHE DANNER TEST POLD WERTANDY NEWMAN BERNEGARD RAMASY AND POL

THE JON POLL LEE HAVALL "MUSTUREDUSTY SMITH AUGUSTA JOHN CHWARTZHAN ASS, AUGUSTA NANNY TENENBAUM ALMY SAVES HAVE DEMANDED FOR CLEHNA & MARY BUTH CLARK

"WILL JON POLL LEE HAVALL "MUSTUREDUSTY SMITH AUGUSTA JOHN FOR CHWARTZHAN ASS, AUGUSTA NANNY TENENBAUM ALMY SAVES HAVE DEMANDED FOR CHIEF JOHN FOR CHIEF JOHN

## Prosper data tables

#### Bid

- Amount
- Minimum Rate
- Listing Status
- ...

#### Loan

• Kev

• Name

Credit Grace

Category

Hierarchy

- Borrow Rate
- Debt to Income Ratio
- ٠...

#### Group

- Member Key
- Group Rating
- City
- ٠...

#### Listing

- Amount Funded
- Amount Remaining
- Bid Count
- ...

#### **Credit Profile**

- Amount Delinquent
- Bankcard Utilization
- Credit Grade
- ٠...

#### Member

- Key
- Friend Member Keys
- Group Key
- ٠ ...

#### Loan Performance

- Cycle Number
- DPD (Date Past Due)
- Net Defaults
- ٠..

#### Marketplace

- Groups Count to Date
- Interest Rates Table
- Loans Closed Count
- ٠ ...

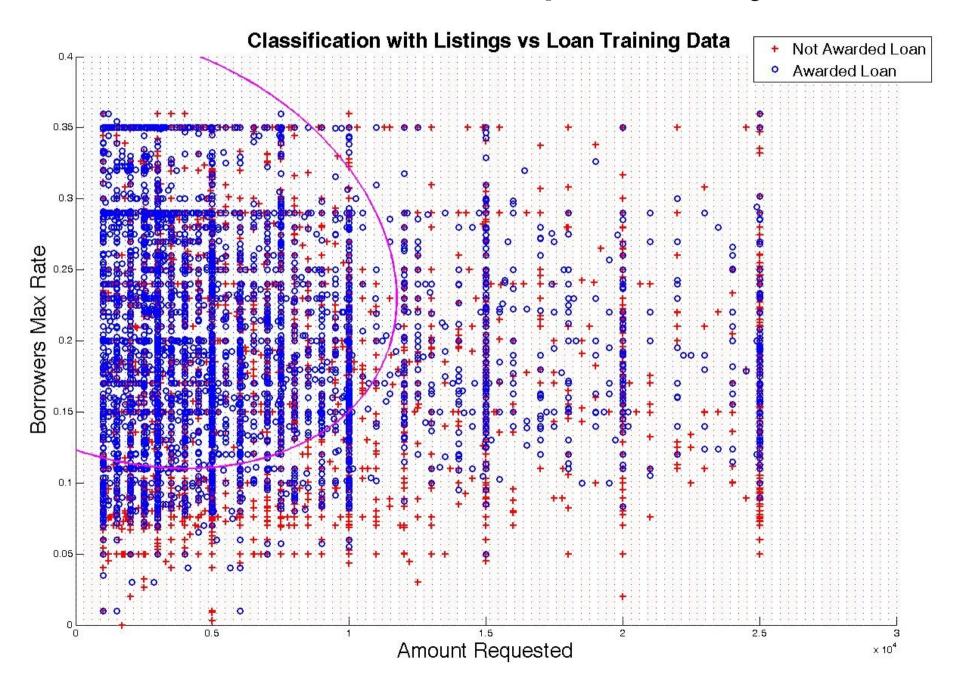
## "the original 11"

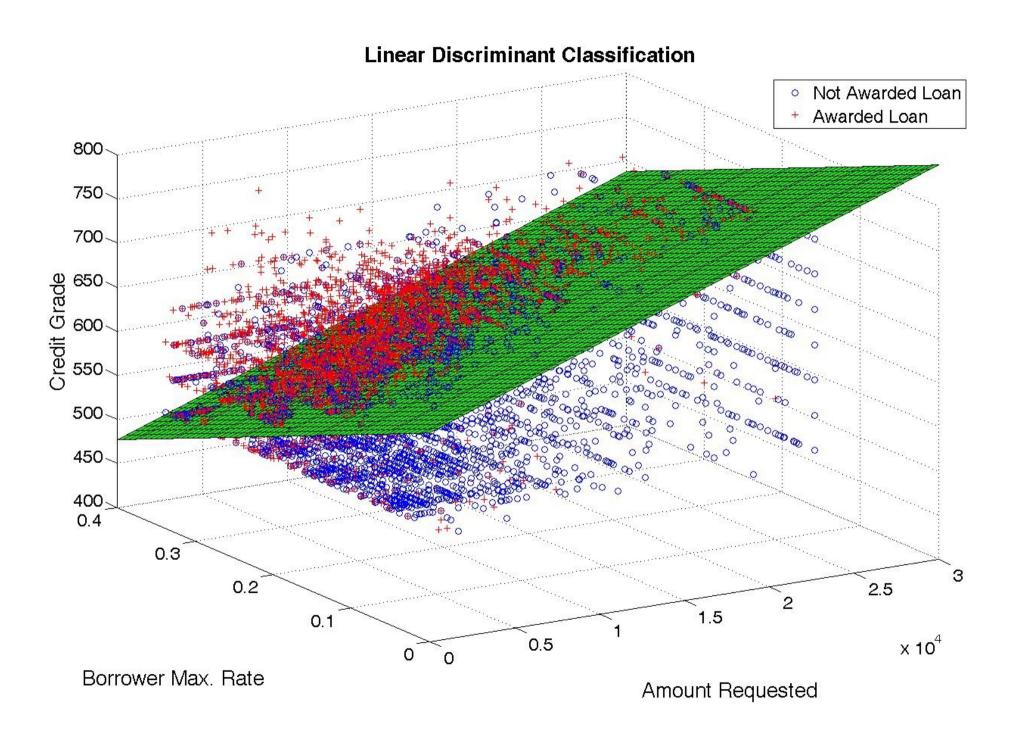
- Amount Requested
- Bid Count \*
- Borrower Rate
- Credit Grade
- Debt to Income Ratio
- Group Key

- Has an image
- Current delinquencies
- Delinquencies last 7 years
- Open credit lines
- Income

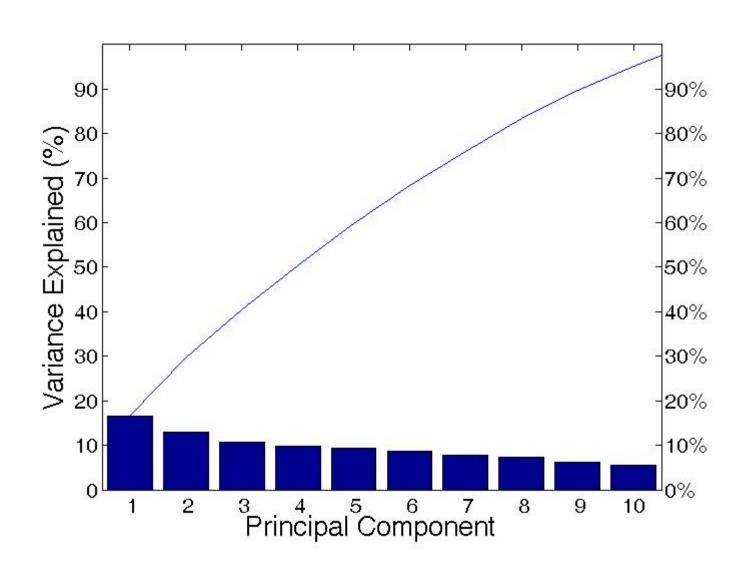
<sup>\*</sup> Not used in Loans vs. unfunded listings classification

## PCA shows separability





## Variance and principle components



### Diverse... and non-numerical

- Textual fields
- Number... or null
- Binary next to thousands



Hi and thank you for looking at my post. I currently own a small 3 employee business in Minnesota, I started the business about 3 years ago and it is really taking off. We currently have over \$100,000 in inventory and are looking to hire more employees. I would like this loan to actually buy even more inventory and also just to have fun with Prosper and use it, I love lending people money on here, it is way more fun then the stock market. Our current sales are about \$360,000/yr. but we are on track for \$500,000 this next fiscal year.

A little info about myself: I am married to a wonderful woman and we have a baby on the way. We have a beautiful big brown Newfoundland named Tank and a Persian cat named Goo who hates me. My hobbies include playing hockey, flying small private planes, and building stuff around my house.

Thank you!

# **Descriptions**

| Loans | Listings | Difference | Words                       |
|-------|----------|------------|-----------------------------|
| 0.44  | 0.58     | 0.14       | cards and other             |
| 0.29  | 0.42     | 0.14       | monthly expenses housing    |
| 0.44  | 0.58     | 0.14       | clothing household expenses |
| 0.41  | 0.54     | 0.13       | and other loans             |
| 0.40  | 0.50     | 0.44       |                             |
| 0.42  | 0.56     | 0.14       | other expenses              |
| 0.29  | 0.43     | 0.14       | expenses housing            |
| 0.44  | 0.57     | 0.13       | clothing household          |
| 0.45  | 0.58     | 0.13       | car expenses                |

## **Titles**

| Loans | Listings | Difference | Words                |
|-------|----------|------------|----------------------|
| 0.024 | 0.014    | 0.010      | high interest credit |
| 0.022 | 0.015    | 0.007      | off high interest    |
| 0.021 | 0.016    | 0.005      | credit card debt     |
| 0.009 | 0.004    | 0.005      | interest credit card |
|       |          |            |                      |
| 0.062 | 0.04     | 0.022      | credit card          |
| 0.049 | 0.032    | 0.017      | high interest credit |
| 0.015 | 0.003    | 0.012      | in prosper           |
| 0.026 | 0.015    | 0.011      | interest card        |

### "the 96"

Amount delinquent null? Amount delinquent Bankcard utilization null? Bankcard utilization Current credit lines null? Current credit lines Current delinquencies null? Current delinquencies Delinquencies last 7 years null? Delinquencies last 7 years Income Length status months Open credit lines null? Open credit lines Revolving credit balance null? Revolving credit balance Amount requested Borrower maximum rate Listing category Credit grade Debt to income ratio null? Debt to income ratio "prosper" in description? "as" in description? "clothing" in description? "household" in description? "housing" in description? "card" in description? "entertainment" in description? "is" in description? "with" in description?

"an" in description? "other expenses" in description? "clothing household" in description? "car expenses" in description? "household expenses" in description? "other loans" in description? "phone cable" in description? "and other" in description? "food entertainment" in description? "cards and" in description? "cards and other" in description? "monthly expenses housing" in description? "clothing household expenses" in description? "and other loans" in description? "phone cable internet" in description? "credit cards and" in description? "monthly net income" in description? "a good candidate" in description? "good candidate for" in description? "my financial situation" in description? Funding option Is borrower homeowner null? Is borrower homeowner? "bills" in title "prosper" in title "card" in title "interest" in title "credit" in title? "credit card" in title? "high interest" in title?

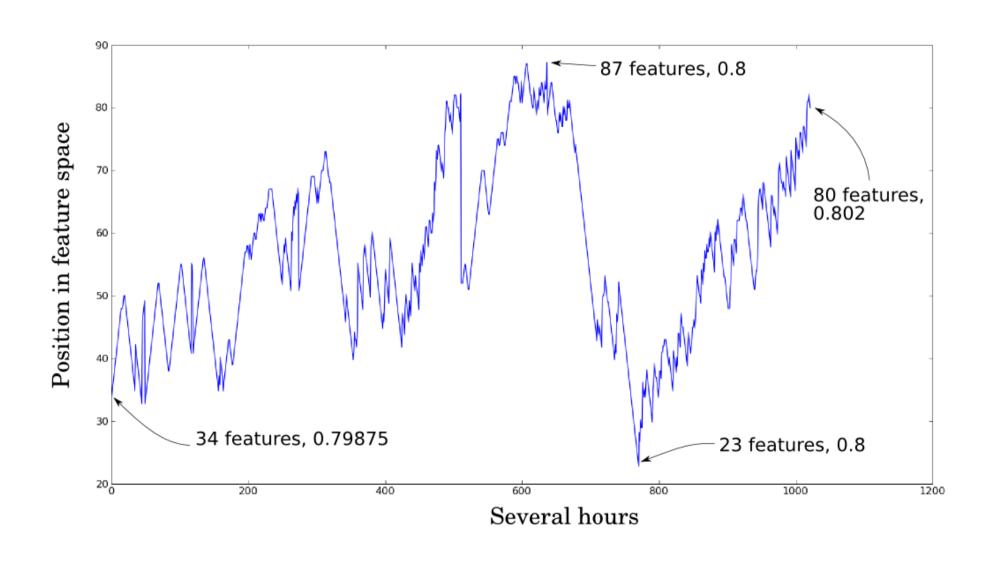
"in prosper" in title?

"interest credit" in title? "pay off" in title? "high interest credit" in title? "off high interest" in title? "credit card debt" in title? "interest credit card" in title? "off credit cards" in title? # of non-alphanumeric characters in title number of CAPS in title Member endorsements null? "i" in member endorsements? "and" in member endorsements? "a" in member endorsements? "to" in member endorsements? "the" in member endorsements? "i have" in member endorsements? "is a" in member endorsements? "this loan" in member endorsements? "will be" in member endorsements? "he is" in member endorsements? "i have known" in member endorsements? "he is a" in member endorsements? "this is a" in member endorsements? "i will be" in member endorsements? "i've known" in member endorsements? Number of "friends" Is member of a group? Has an image in description? Is a borrower Is a Group Leader Is a lender Is an institutional lender

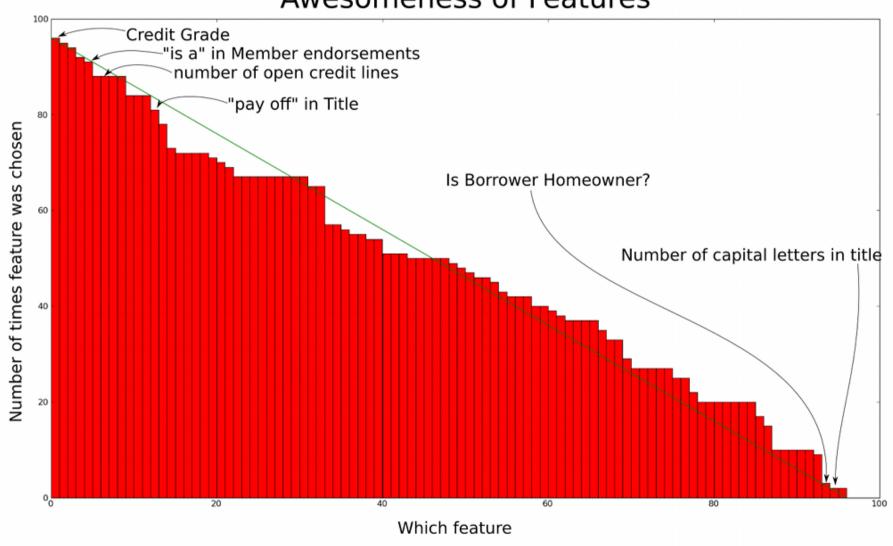
## Floating Feature Search

- Linear Discriminant as evaluation function
- Lots of samples, lots of features:
  - 96 features
  - 300,000 listings
- sssssslllllllooooooowwwwwwww. Must:
  - limit the number of features hence forwards floating search. Decreases optimality.
  - decrease the number of samples (increases bias)

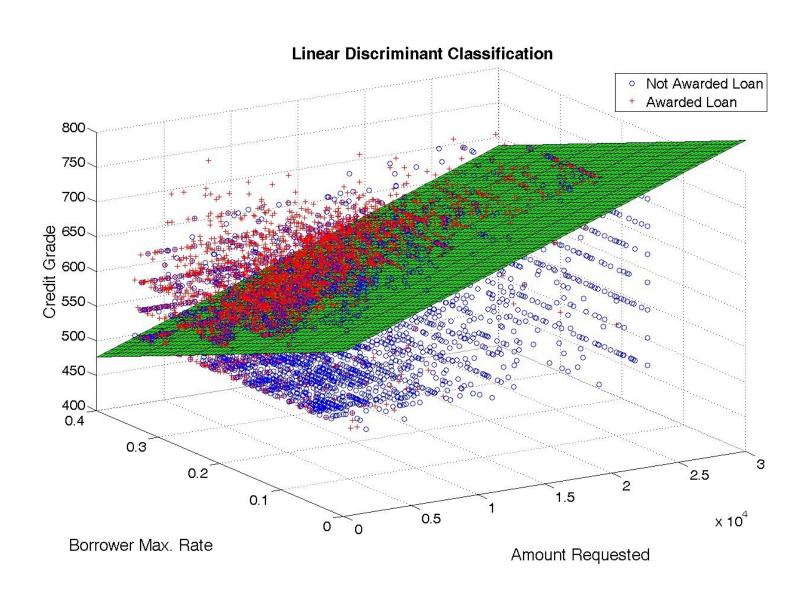
### **Feature Crawl**



#### Awesomeness of Features



## Classification Performance

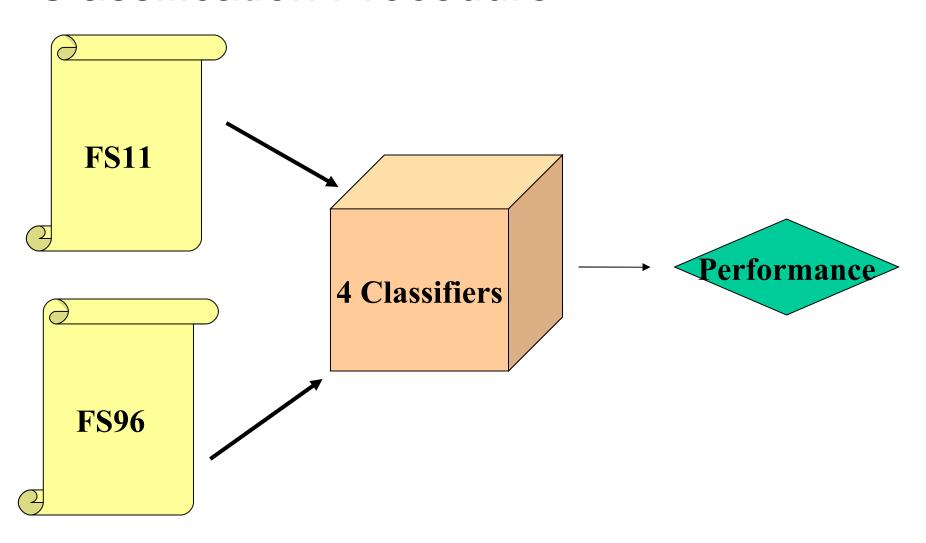


### Classification Overview

- Review of Methods
- Discussion of prior probability, implications when viewing results
- Summary of Results, Tables
- Classification Improvements
- Tying it Back to P2P Lending
- Detailed performance data is given on project website.

### What We Did

#### Classification Procedure



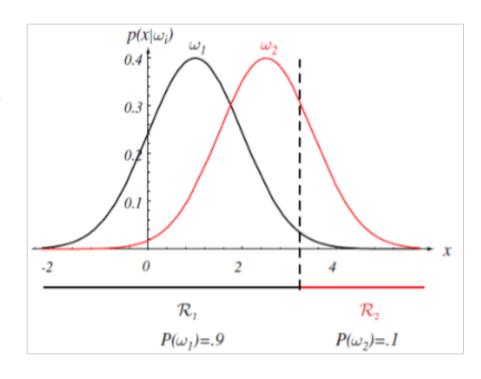
### Review of Methods

- LDA pseudoinverse (mse)
- PCA+LDA reduce dims, classify using some number of principal comp. (70%/30% 10F CV)
- SVM map higher to higher dim space
  - Linear, 1 norm (smo) soft margin (slack) (70%/30%, no CV)
- Neural Networks high degree of freedom (hidden nodes)
  - Feedforward, Tr:conjugate gradient descent. 1 HL {5,10,20 hidden nodes} 70%tr,15%val, 10%test
- Libraries: Matlab SVM, NN Tools

# Listing / Loan Discussion

- Prior probability leads to classifiers that favor one class
- In comparing classifiers using stratified sampling FN rate is large contributor of error
- Results are given for both stratified sampling & equal priors
- PCA+LDA classification attempts to separate these distributions in a lower dim

| TP | FN |
|----|----|
| FP | TN |



From: Richard O. Duda, Peter E.

Hart, and David G. Stork, Pattern Classification. Copyright c 2001 by John Wiley & Sons, Inc.

# Brief Summary of Results

- Listing\Loan (Stratified) best performing classifier
  - FS10, Neural Network (10 hidden nodes)
  - 14% error (prevalence of C1: 16.8%)
    - 2000 samples, 20 Hidden, 75%Tr, 15%Val, 10%Test
  - Different prior probabilities of FS10 & FS96
    - Effect is that error is mostly FN approx. = prevalence of c1
- Listing\Loan (Equal) best performing classifier
  - FS10, FS96 Neural Network (20 hidden nodes)
  - 18%, 16% respectively
    - 2000 samples, 20 Hidden, 75%Tr, 15%Val, 10%Test
- Default\No Default
  - FS11, FS96 Neural Network (20 hidden nodes)
  - 26%,15% respectively
    - 2000 samples, 20 Hidden, 75%Tr, 15%Val, 10%Test

# Lessons \ Future Improvements

- Neural Nets were a good match, surprising?
  - Not really, given a number of hidden nodes (degrees of freedom), arbitrarily complex decision boundaries can be found – great for high dimension feature vectors.
- Effect of adding additional features
  - For any method of classification, data suggests additional dimensions improve accuracy, complexity not worth the effort. We are talking about ~4% less error.
- Satisficing LDA+PCA good enough
  - No matter what method was used results ~84-79% correct
- Real world data != equal priors
  - Feature search should seek to minimize FP,FN better separation, more realistic classifiers for Loan/No Loan

# Take Home Message

- What is all this really good for anyways?
  - Designed several classifiers performing > 80% accuracy (that's great but...)
  - Goal is not to make the world's best performing classifier, rather the data can be classified. (clustering-> classification -> intuitive models)
- A Strategy for Borrowers?
  - We demonstrated that there *are* features that can separate the data, what is your strategy to improve chances...
    - Classification results not quite satisfying and tractable
    - Coco & Ernesto build on these results demonstrate models that make intuitive sense
- A Strategy for Lenders an Investment Tool?
  - We demonstrated to a reasonable accuracy that features indicative of defaulting exist. Is this better than intuition? (a machine classifier doesn't say you should get a loan because you got divorced, experienced a disaster, etc)
  - Problems with this strategy Someone of dubious repayment potential gets a loan. She then repays because she won the lottery. Outside events not taken into account.
  - A temporal analysis to examine loan performance is required. "Now that you have a loan lets see what you do." Stay tuned for HMMs

#### Loan / No Loan Summary

| Method             | FS96<br>E | FS10<br>E | #FS9<br>6 | #FS1<br>0 | Ratio<br>FS96 | Ratio<br>FS10 | Tr/(Val)/<br>Te | CV FS96    | CV FS11    |
|--------------------|-----------|-----------|-----------|-----------|---------------|---------------|-----------------|------------|------------|
| SVM (All)          | 0.085     | 0.157     | 2000      | 2000      | 0.085         | 0.168         | 70/30           | None       | None       |
| SVM TOP 10         | 0.098     | null      | 2000      | 2000      | 0.085         | 0.168         | 70/30           | None       | None       |
| PCA+LDA (10 P.C.)  | 0.259     | 0.223     | 5000      | 5000      | 0.085         | 0.168         | 70/30           | 10 Fold CV | 10 Fold CV |
| NN ALL (20 Hidden) | 0.085     | 0.143     | 2000      | 2000      | 0.085         | 0.168         | 75/15/10        | N/A        | N/A        |
| NN ALL (10 Hidden) | 0.085     | 0.141     | 2000      | 2000      | 0.085         | 0.168         | 75/15/10        | N/A        | N/A        |
| NN ALL (5 Hidden)  | 0.085     | 0.145     | 2000      | 2000      | 0.085         | 0.168         | 75/15/10        | N/A        | N/A        |
| LDA 30             | 0.085     | null      | 10000     | null      | 0.085         | null          | 70/30           | None       | null       |
| LDA 10             | 0.085     | 0.141     | 10000     | 10000     | 0.085         | 0.168         | 70/30           | None       | 10 Fold CV |
| LDA 5              | 0.085     | null      | 10000     | null      | 0.085         | null          | 70/30           | None       | null       |

Note: while the error
In this case is high: the
FN classification is better
due to pca dim reduction

#### Stratified sampling

| Method             | FS96<br>E | FS10<br>E | #FS9<br>6 | #FS1<br>0 | Ratio<br>FS96 | Ratio<br>FS10 | Tr/(Val)/<br>Te | CV FS96    | CV FS11    |
|--------------------|-----------|-----------|-----------|-----------|---------------|---------------|-----------------|------------|------------|
| SVM (All)          | 0.192     | 0.230     | 2000      | 2000      | 0.500         | 0.500         | 70/30           | None       | None       |
| SVM TOP 10         | 0.212     | null      | 2000      | 2000      | 0.500         | 0.500         | 70/30           | None       | None       |
| PCA+LDA (10 P.C.)  | 0.259     | 0.223     | 5000      | 5000      | 0.500         | 0.500         | 70/30           | 10 Fold CV | 10 Fold CV |
| NN ALL (20 Hidden) | 0.160     | 0.185     | 2000      | 2000      | 0.500         | 0.500         | 75/15/10        | N/A        | N/A        |
| NN ALL (10 Hidden) | 0.183     | 0.191     | 2000      | 2000      | 0.500         | 0.500         | 75/15/10        | N/A        | N/A        |
| NN ALL (5 Hidden)  | 0.212     | 0.200     | 2000      | 2000      | 0.500         | 0.500         | 75/15/10        | N/A        | N/A        |
| LDA 30             | 0.213     | null      | 10000     | null      | 0.500         | null          | 70/30           | None       | null       |
| LDA 10             | 0.259     | 0.220     | 10000     | 10000     | 0.500         | 0.500         | 70/30           | None       | 10 Fold CV |
| LDA 5              | 0.224     | null      | 10000     | null      | 0.500         | null          | 70/30           | None       | null       |

#### **Equal Sampling**

#### Default / No Default Summary

| Method                | FS96<br>E | FS11<br>E | #FS9<br>6 | #FS1<br>1 | Ratio<br>FS96 | Ratio<br>FS11 | Tr/<br>(Val)/Te | CV<br>FS96    | CV<br>FS11    |
|-----------------------|-----------|-----------|-----------|-----------|---------------|---------------|-----------------|---------------|---------------|
| SVM (All)             | 0.190     | 0.270     | 2000      | 2000      | 0.500         | 0.500         | 70/30           | None          | None          |
| SVM TOP 10            | 0.210     | null      | 2000      | 2000      | 0.500         | 0.500         | 70/30           | None          | None          |
| PCA+LDA (10<br>P.C.)  | 0.197     | 0.250     | 2000      | 2000      | 0.500         | 0.500         | 70/30           | 10 Fold<br>CV | 10 Fold<br>CV |
| NN ALL (20<br>Hidden) | 0.152     | 0.264     | 2000      | 2000      | 0.500         | 0.500         | 75/15/10        | N/A           | N/A           |
| NN ALL (10<br>Hidden) | 0.156     | 0.271     | 2000      | 2000      | 0.500         | 0.500         | 75/15/10        | N/A           | N/A           |
| NN ALL (5<br>Hidden)  | 0.164     | 0.273     | 2000      | 2000      | 0.500         | 0.500         | 75/15/10        | N/A           | N/A           |
| LDA 30                | 0.273     | null      | 1000      | null      | 0.500         | null          | 70/30           | None          | null          |
| LDA 11                | 0.257     | 0.240     | 1000      | 2000      | 0.050         | 0.500         | 70/30           | None          | 10 Fold<br>CV |
| LDA 5                 | 0.248     | null      | 1000      | null      | null          | null          | 70/30           | None          | null          |

### Bayesian Network

- Nine Quantized Features from Floating Selection Set:
  - A. Amount Delinquent (Low, High)
  - B. Open Credit Lines (Low, Med, High)
  - C. Amount Requested (Low, Moderate, High, Very High)
  - D. Borrower's Max Rate (Low, Moderate, High, Very High)
  - E. Credit Grade (Poor, Average, Good, Very good)
  - F. Debt to Income Ratio (Low, Med, High)
  - G. 'Good Candidate' (True, False)
  - H. Funding Option (True, False)
  - I. Endorsement (True, False)

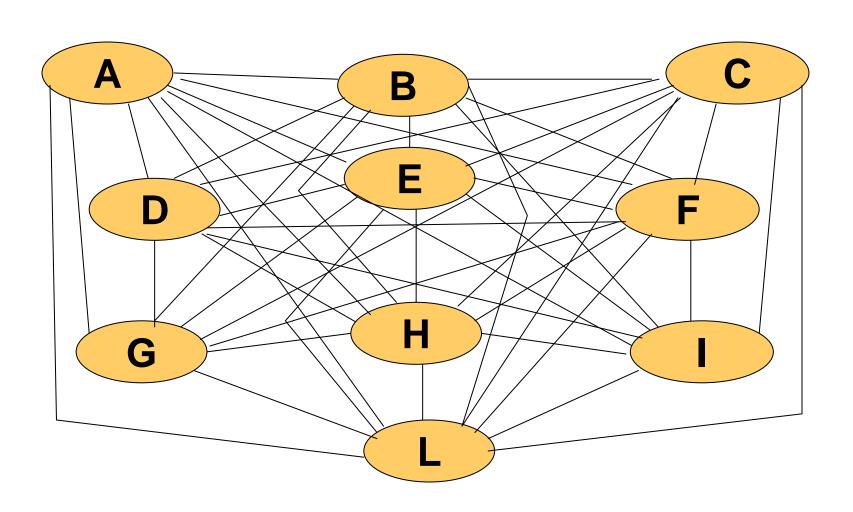
## Structure Learning

- Methods:
  - Exhaustive Search: PC Algorithm
  - Score-Based:MCMC; K2, Greedy Search
- Challenges:
  - 10 Nodes = 4.2 x 10^18 Directed Acyclic Graphs!!!!!!!

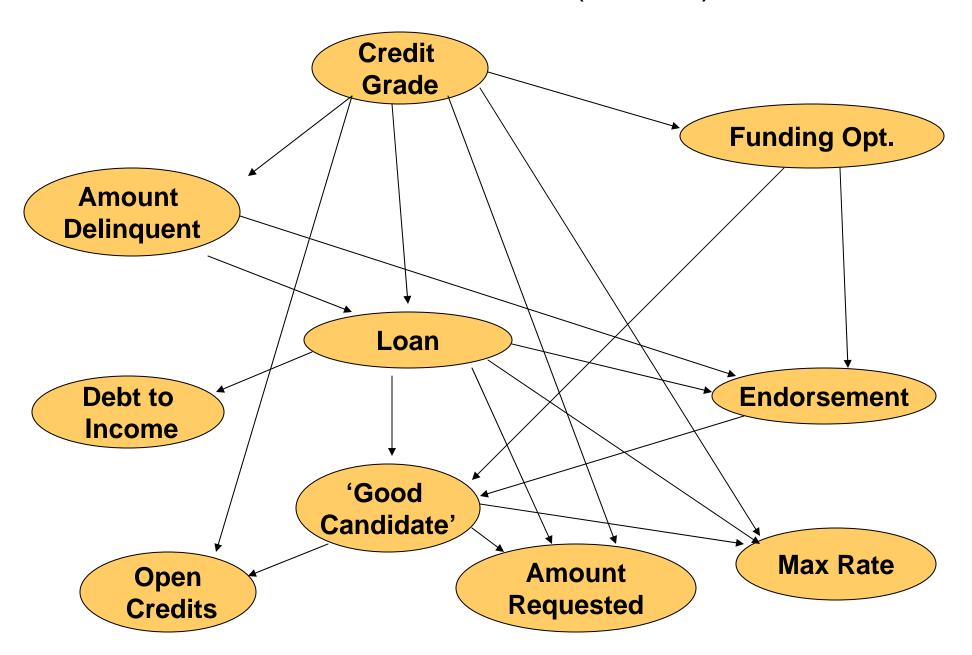
$$r(n) = \sum_{i=1}^{n} (-1)^{i+1} \binom{n}{i} 2^{i(n-i)} r(n-i) = n^{2^{\mathcal{O}(n)}}$$

- PC algorithm... Overflow!!!
- Overfitting??

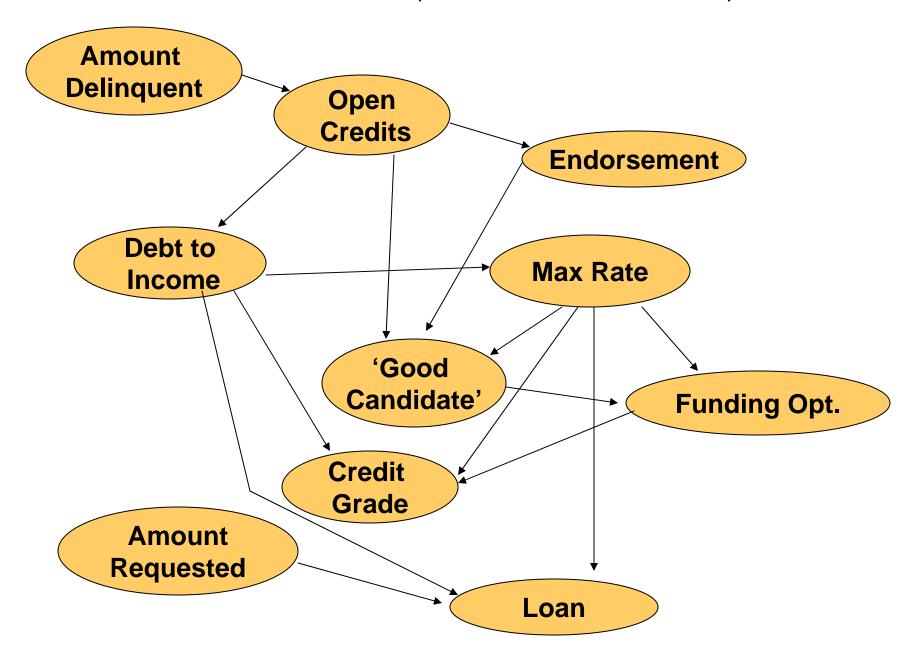
### Complete Graph



#### Learned Structure (MCMC)



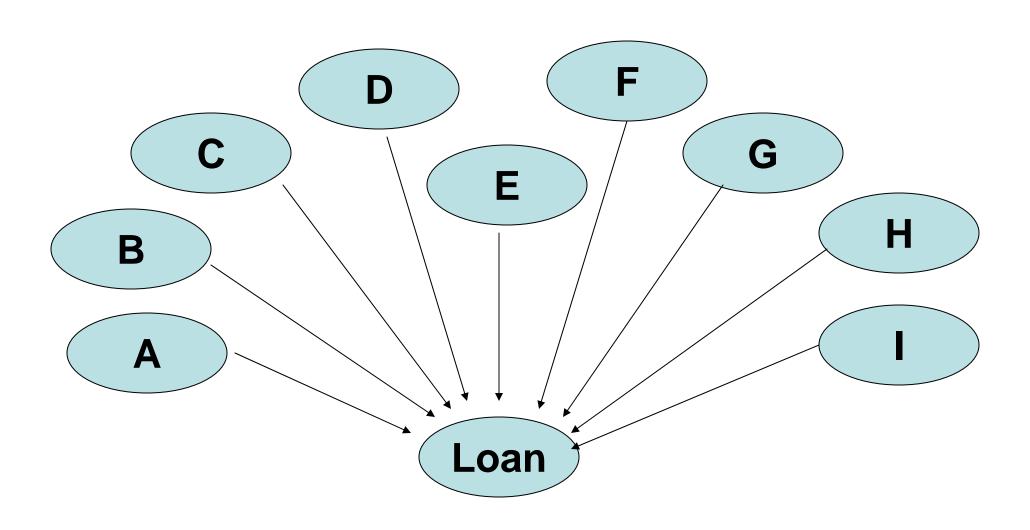
#### Learned Structure (Chow-Liu Trees & K2)



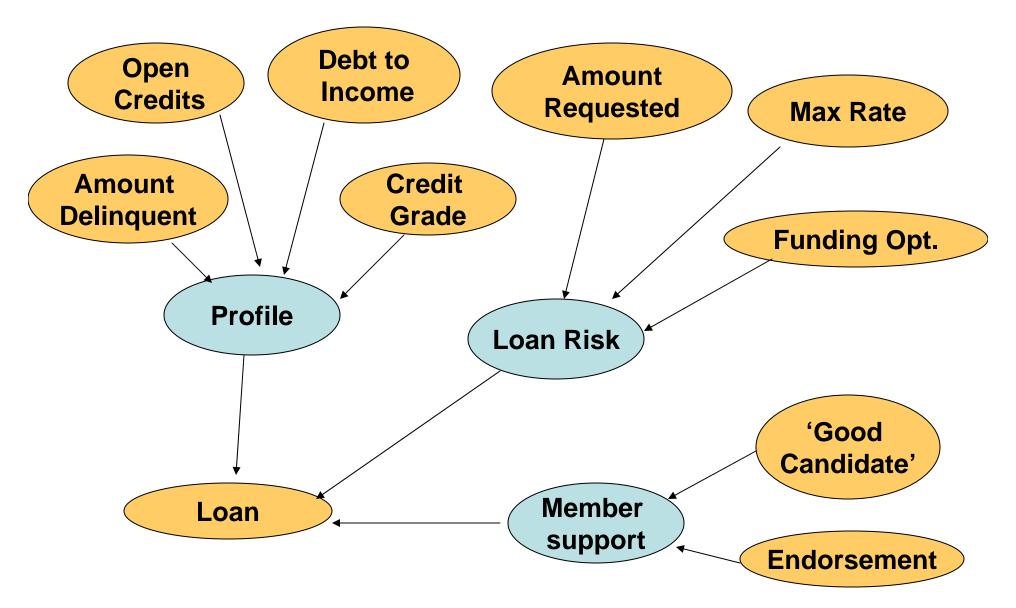
## **Building Other Models**

- Models:
  - Naïve Bayes Classifier
  - Belief Structures
  - Noisy Functional Dependence Models
- Parameter Estimation (complete data set)
  - Batch Learning: MLE & Bayesian Estimation (Maximum a posteriori parameters)
  - MAP decision rule (classification)

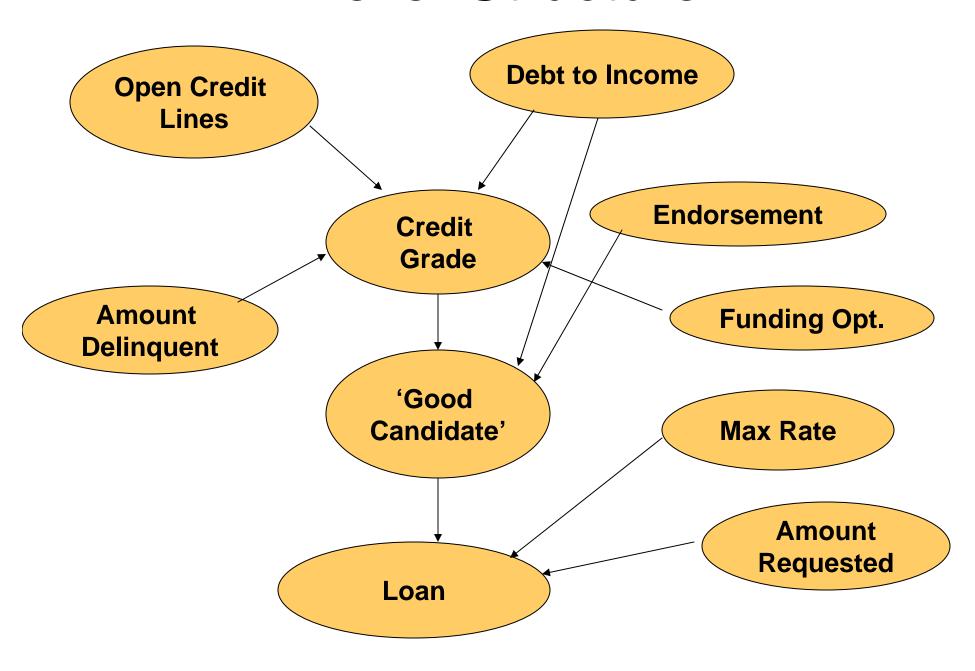
## Naïve Bayes Classification



## Noisy Functional Dependence

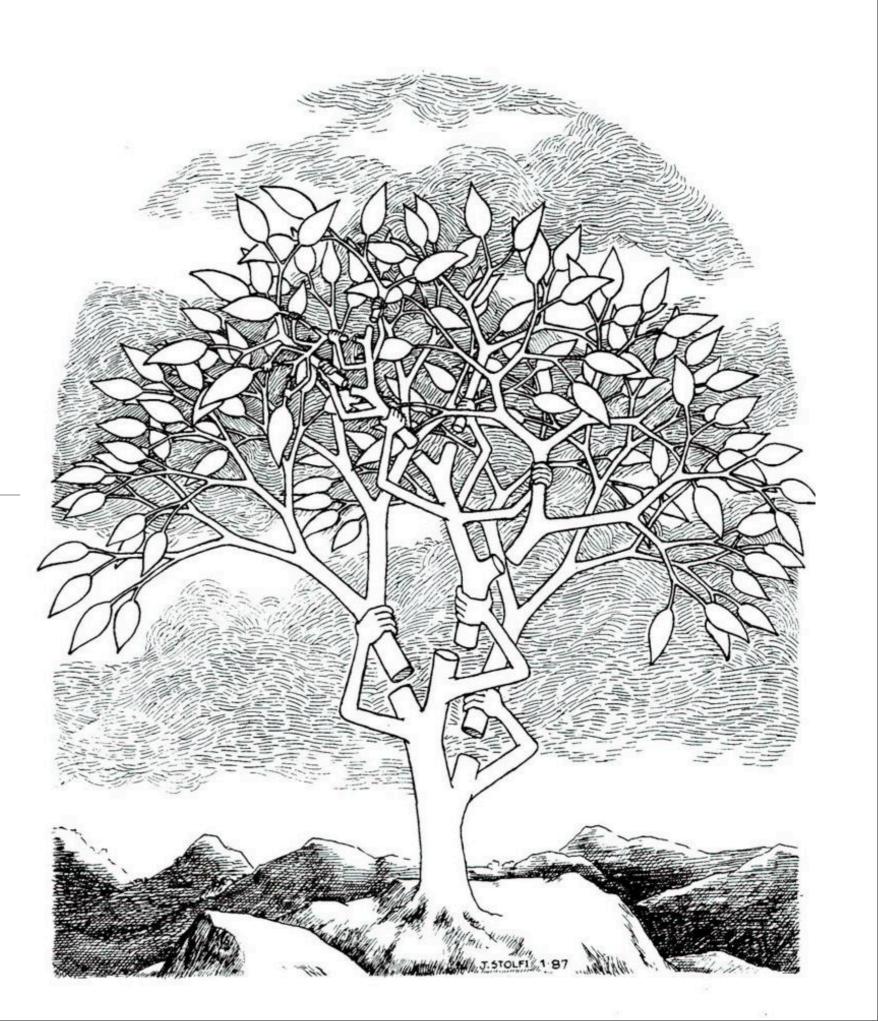


### **Belief Structure**



| Bayes Net Model                   | BIC score<br>(x 10^5) | Clsf. Performance |
|-----------------------------------|-----------------------|-------------------|
| Learned Structure (MCMC)          | -1.33                 | 0.76              |
| Learned Structure (Chow-Liu & K2) | -1.34                 | 0.7525            |
| Naïve Bayes Net                   | -1.83                 | 0.7580            |
| Belief structure                  | -1.42                 | 0.5620            |

## Decision Trees



## Decision Trees: questions

- BORROWER: will my loan get funded?
  - (how much should I borrow? what interest rate should I set?)
- LENDER: if I fund this loan, will I be paid back?
  - (what features best predict default? which loans should I fund?)

## Decision Trees: methodology

- FEATURES: experimented with various sets
  - Greedy 11 (eliminated #bids)
  - sets of 2 4 6 8 10 features
- NODE SPLIT THRESHOLD: 2 6400

probability i belongs to class j

minimize Gini impurity

$$I_G(i) = 1 - \sum_{j=1}^m f(i,j)^2 = \sum_{j \neq k} f(i,j)f(i,k)$$

to zero when all samples part of single target category

• PRIORS: tried with / without prior probabilities [13% loan, 87% no loan]

## Decision Tree: analysis

### Variables:

- FEATURE SET
- NODE SPLIT threshold

### Tests:

- SENSITIVITY: reserved 10%, 10 iterations
- ERROR RATES: total, FP, FN



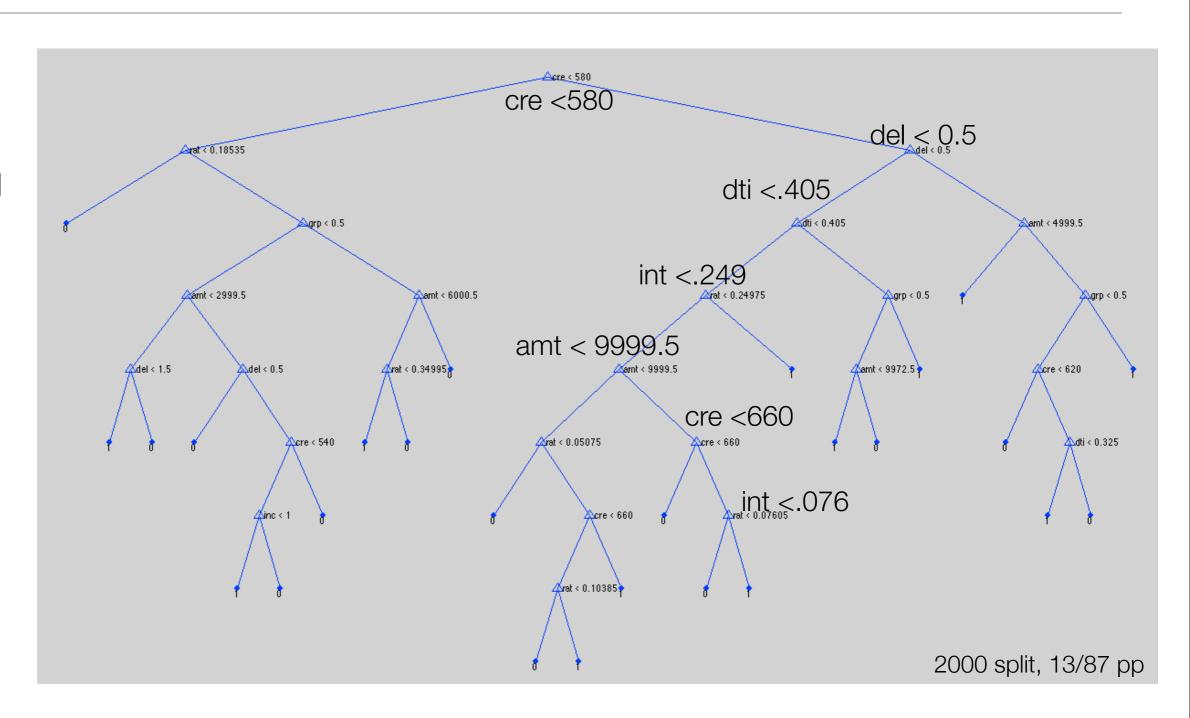
Pick best feature sets & split threshold to:

minimize variance across iterations minimize error

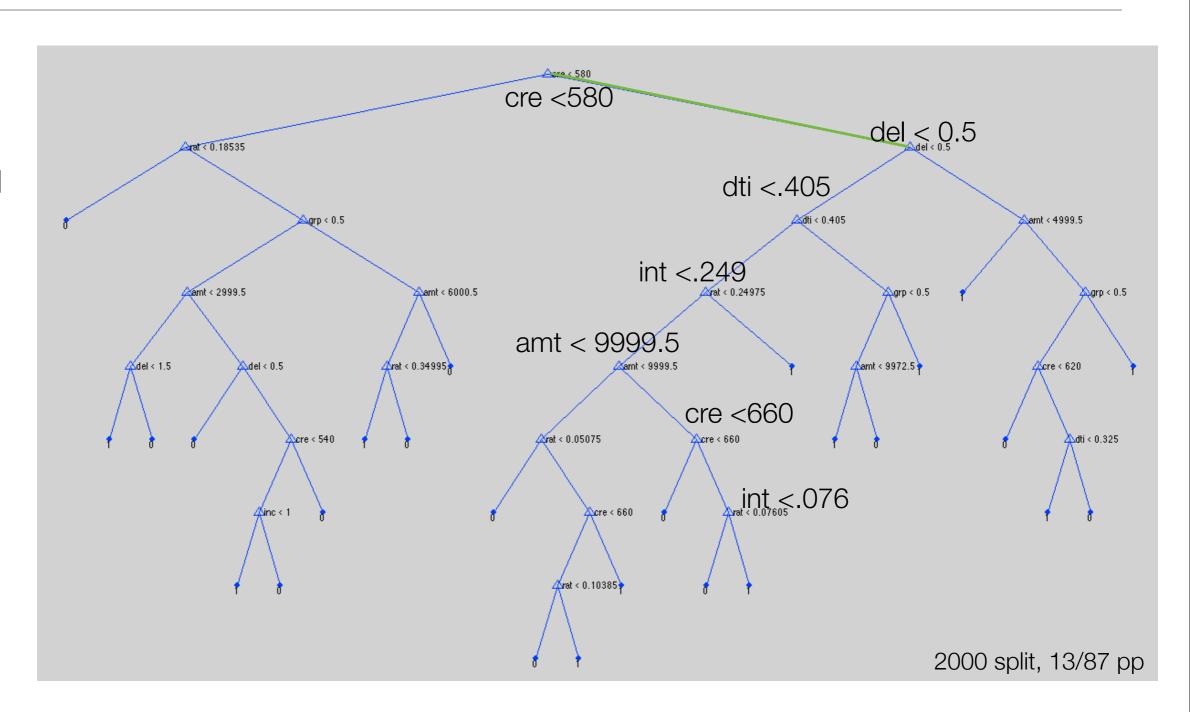
# now entering: TINY FONT TERRITORY



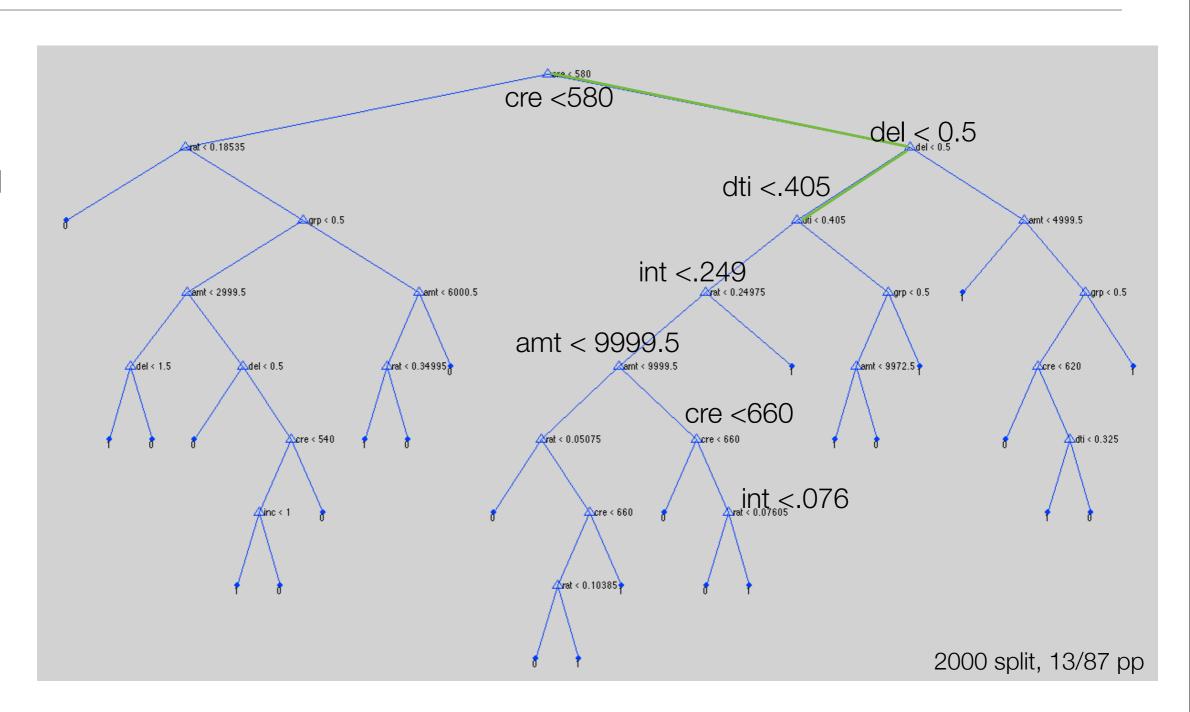
- B credit
- no delinq
- DTI 10%
- 11% interest
- \$1500 loan



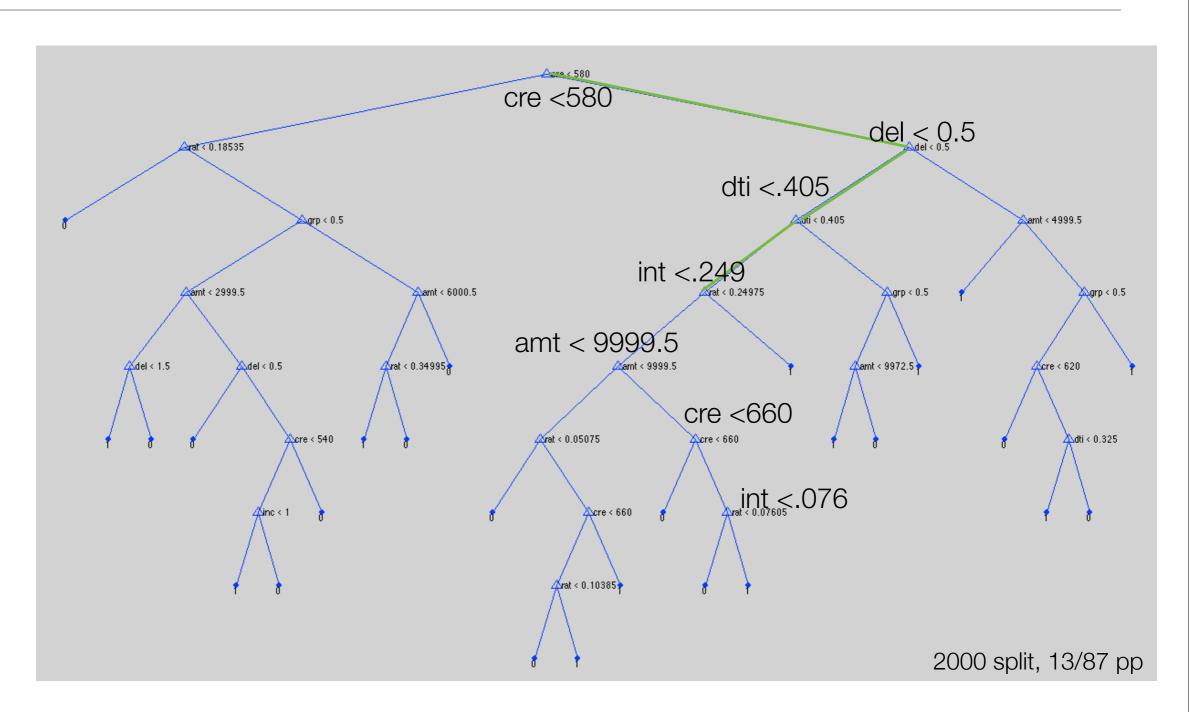
- B credit
- no delinq
- DTI 10%
- 11% interest
- \$1500 loan



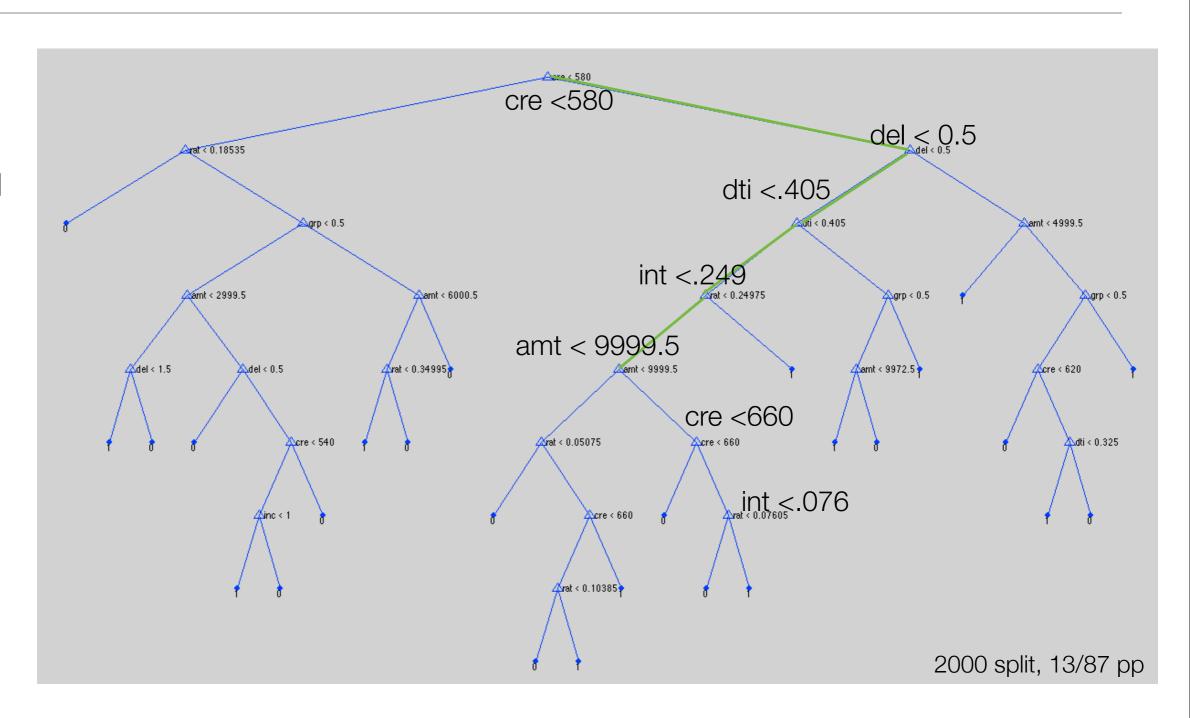
- B credit
- no delinq
- DTI 10%
- 11% interest
- \$1500 loan



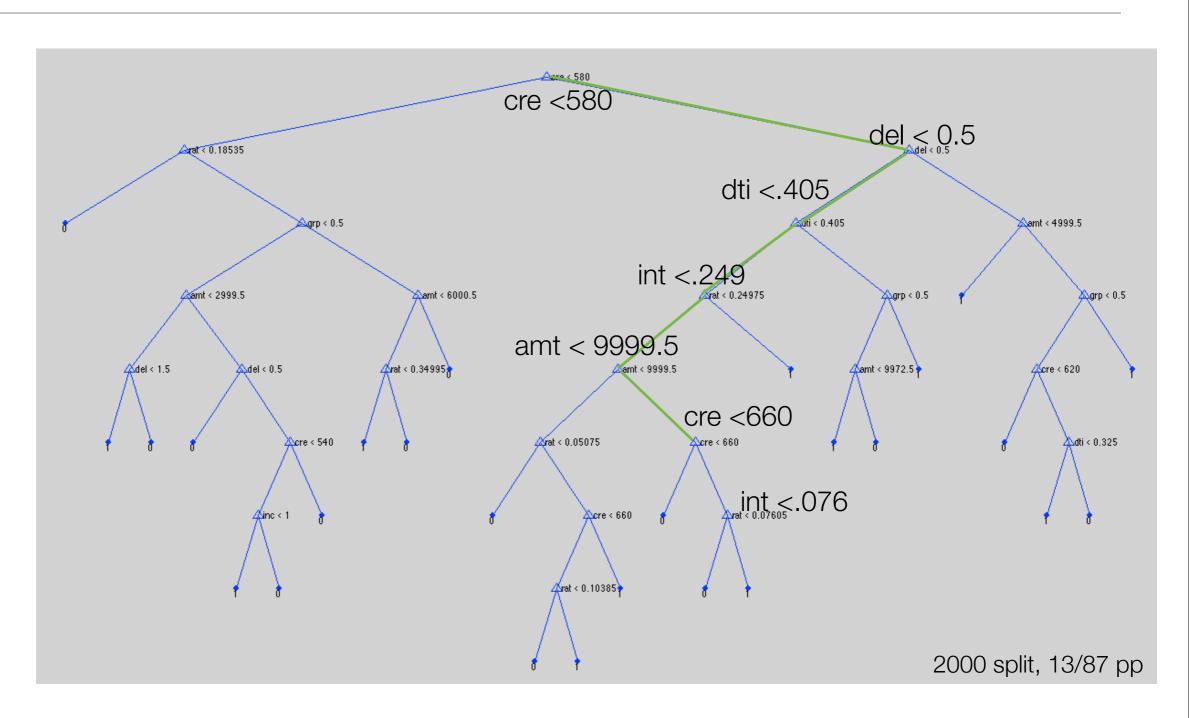
- B credit
- no delinq
- DTI 10%
- 11% interest
- \$1500 loan



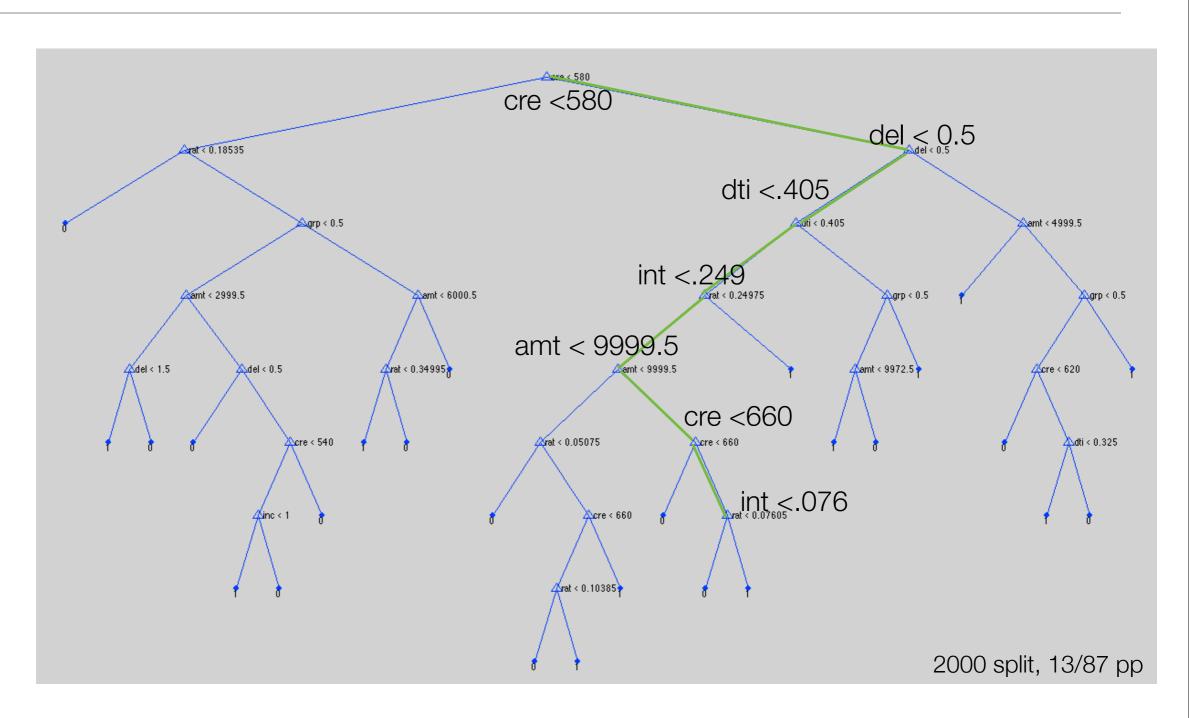
- B credit
- no delinq
- DTI 10%
- 11% interest
- \$1500 loan



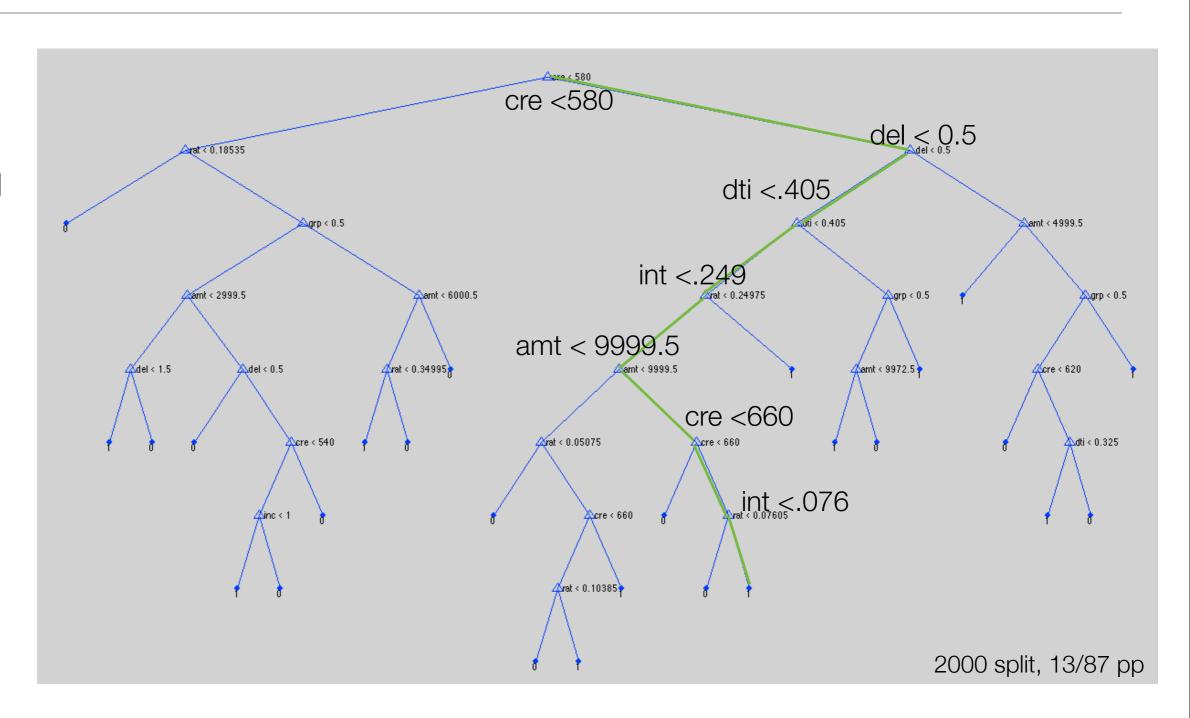
- B credit
- no delinq
- DTI 10%
- 11% interest
- \$1500 loan



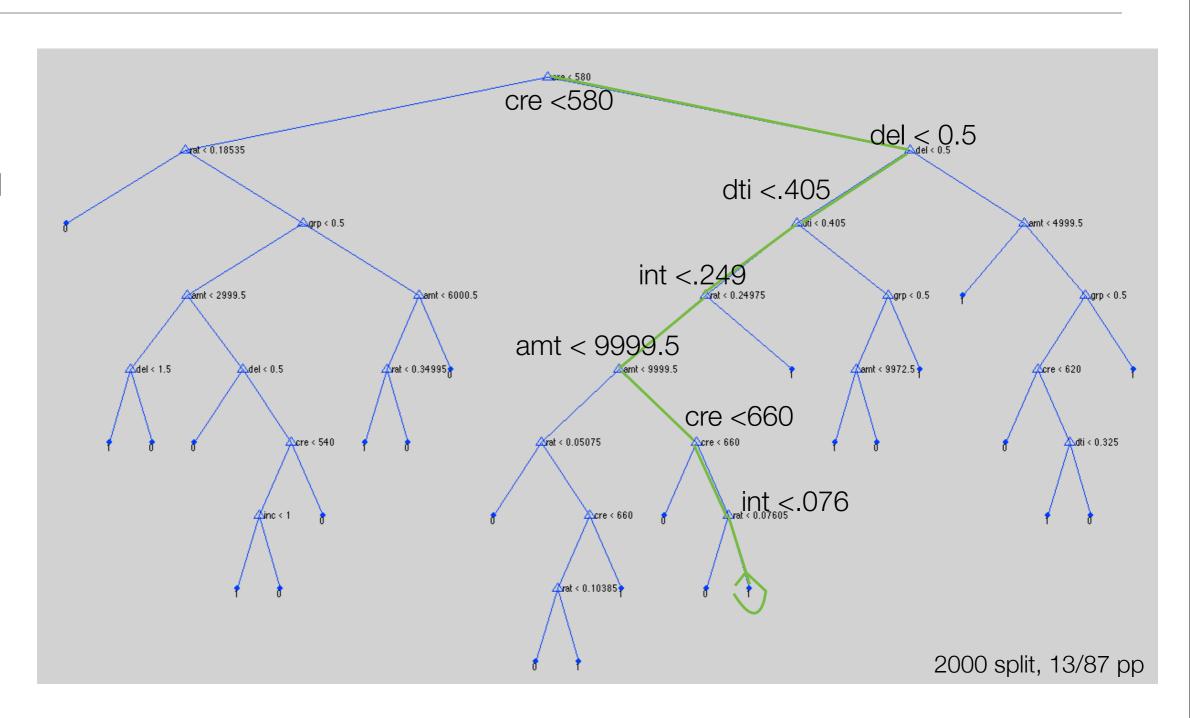
- B credit
- no delinq
- DTI 10%
- 11% interest
- \$1500 loan



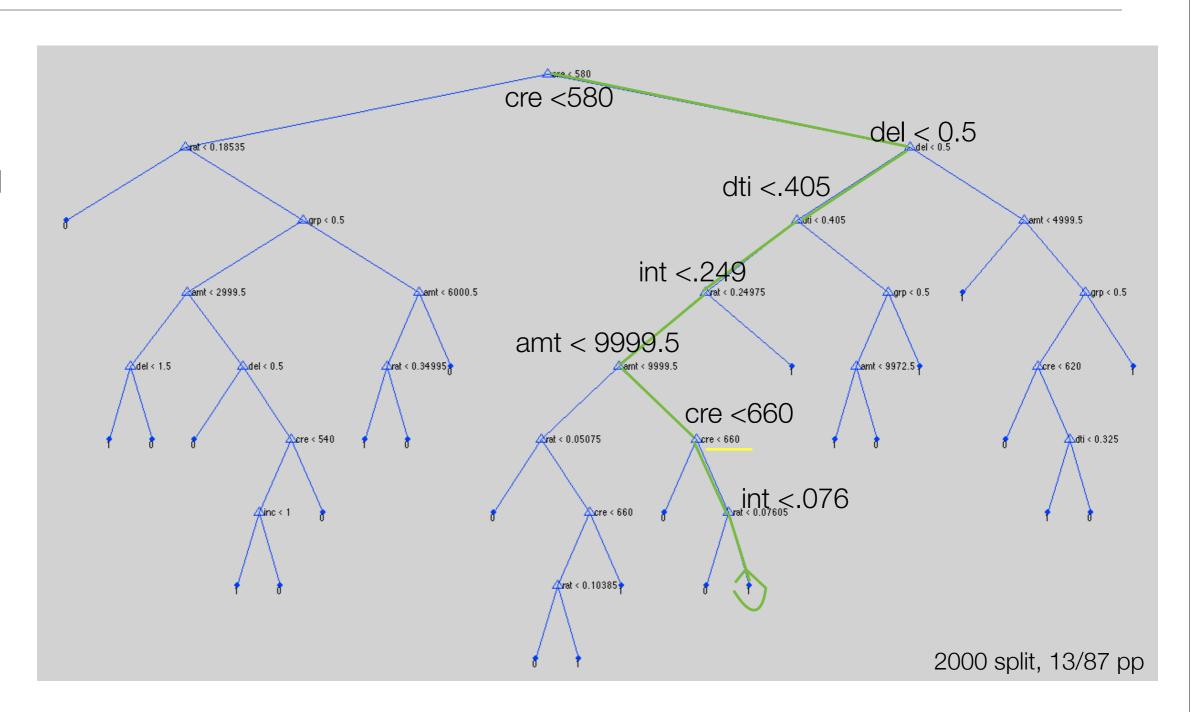
- B credit
- no delinq
- DTI 10%
- 11% interest
- \$1500 loan



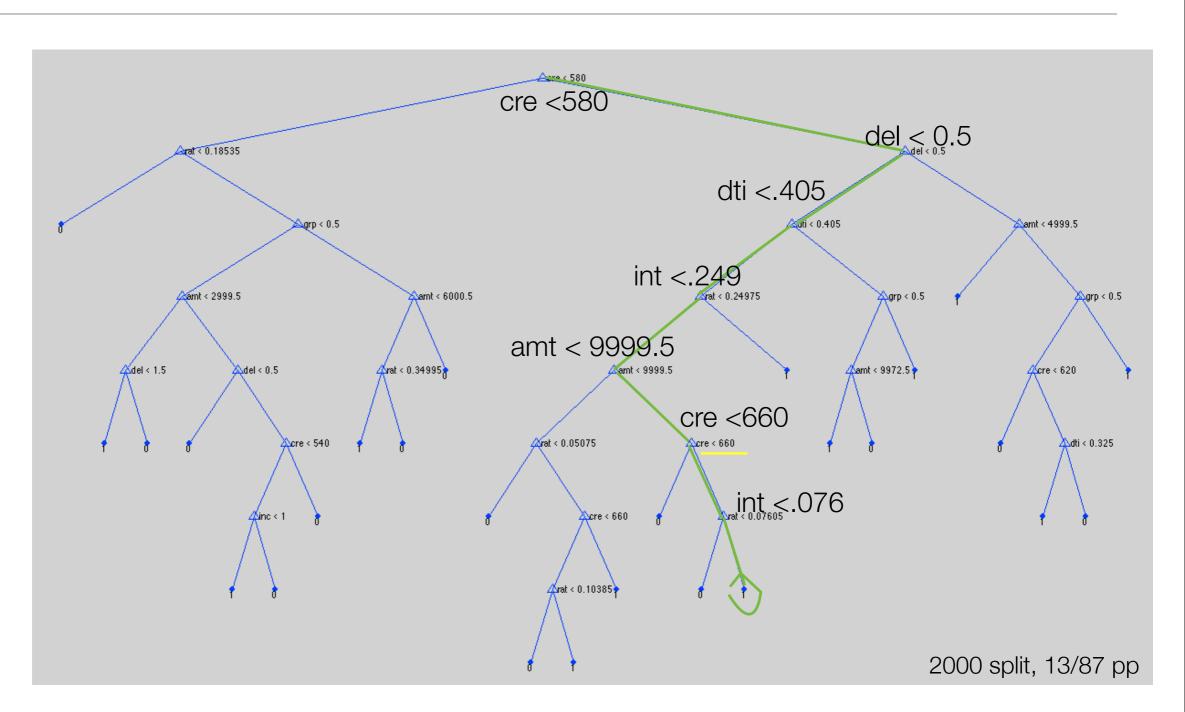
- B credit
- no delinq
- DTI 10%
- 11% interest
- \$1500 loan



- B credit
- no delinq
- DTI 10%
- 11% interest
- \$1500 loan

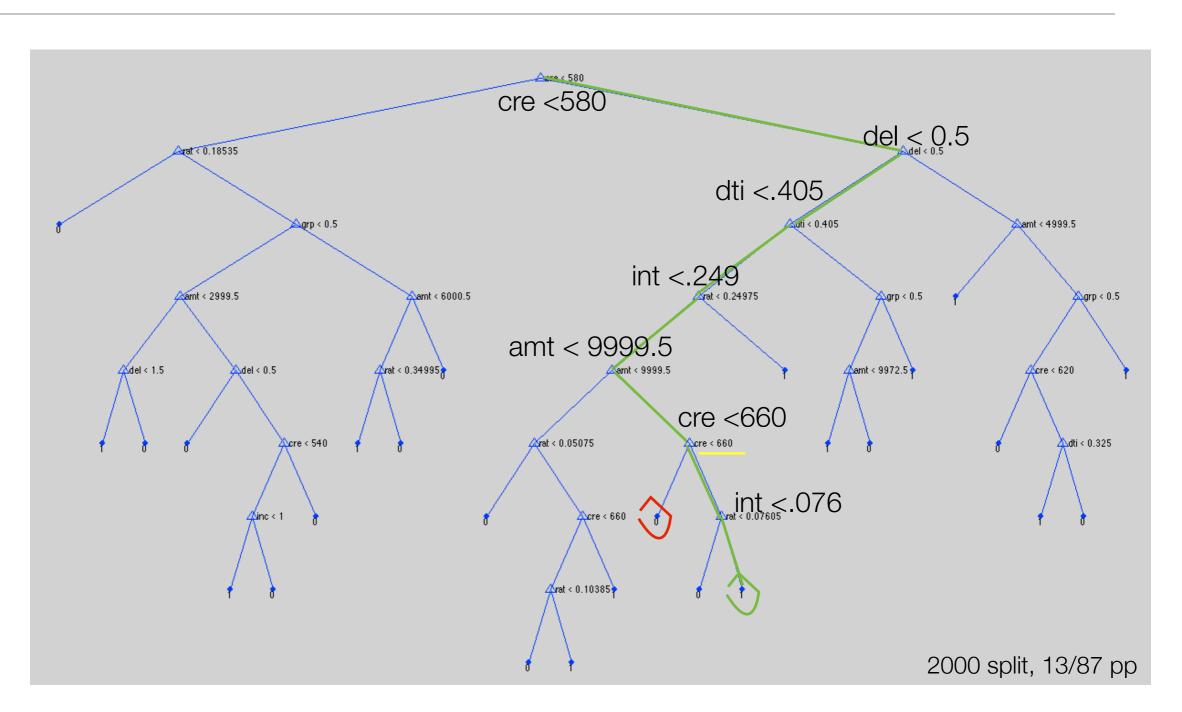


- B credit
- no delinq
- DTI 10%
- 11% interest
- \$1500 loan



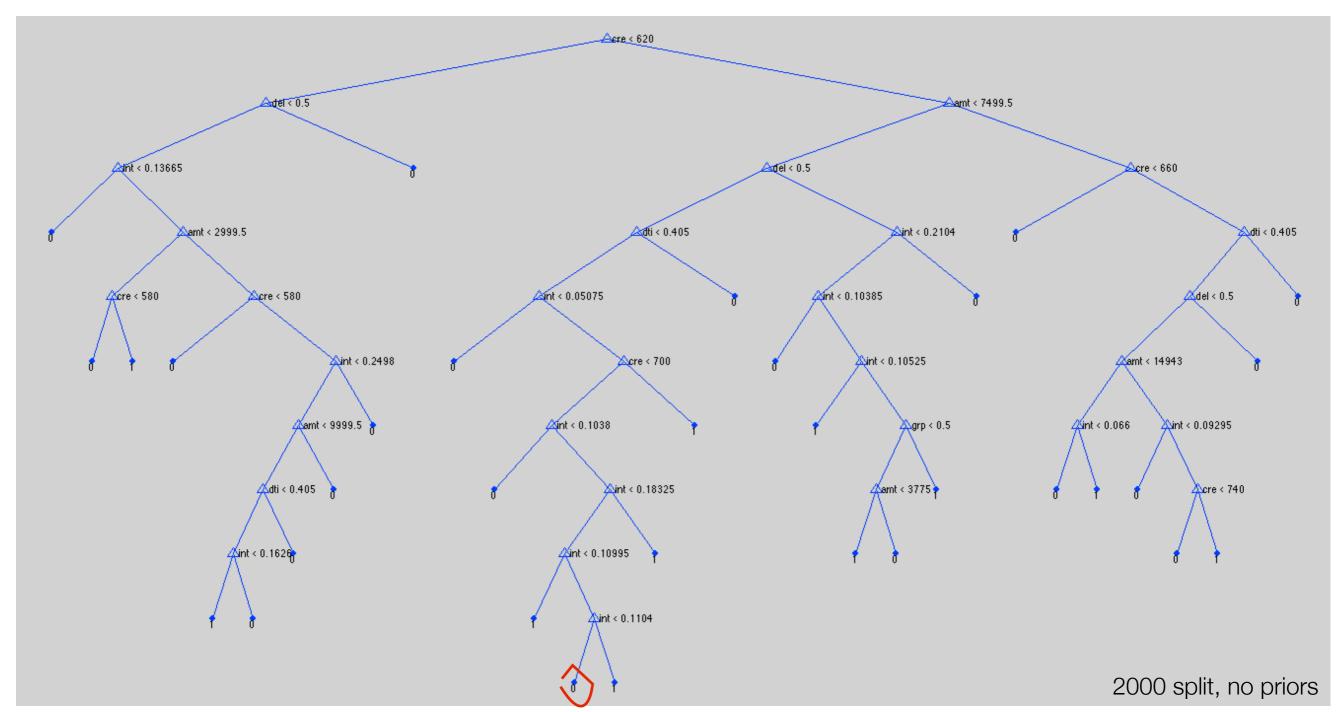
but not with C credit!

- B credit
- no delinq
- DTI 10%
- 11% interest
- \$1500 loan



but not with C credit!

# priors matter! (same profile, without priors, predicts no loan)



same profile, predicts no loan

# DT could be used to help borrowers set loan amount, increase loan conversion for prosper



C credit, DTI = 10%, 1 current delinquency, needs \$6000

tree predicts

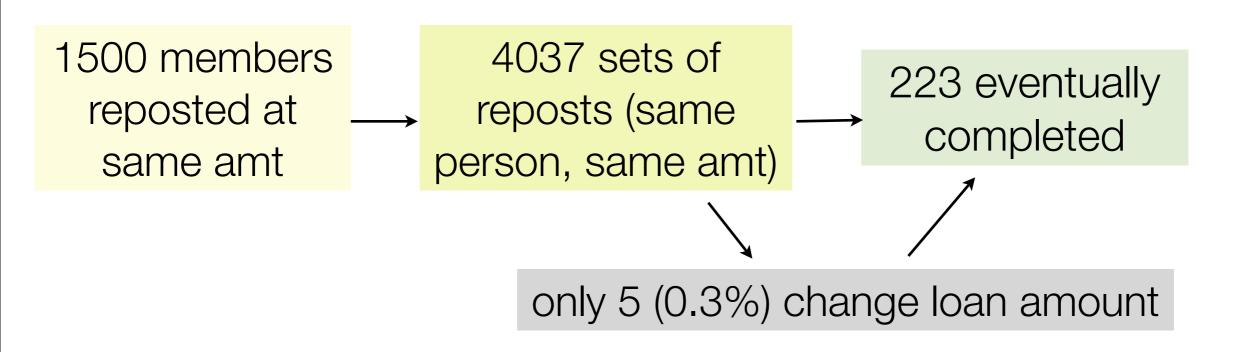
(borrowers with same profile)

56% no loan average amt listed: \$4625

44% loan average amt listed: \$3700

advice: request lower amount

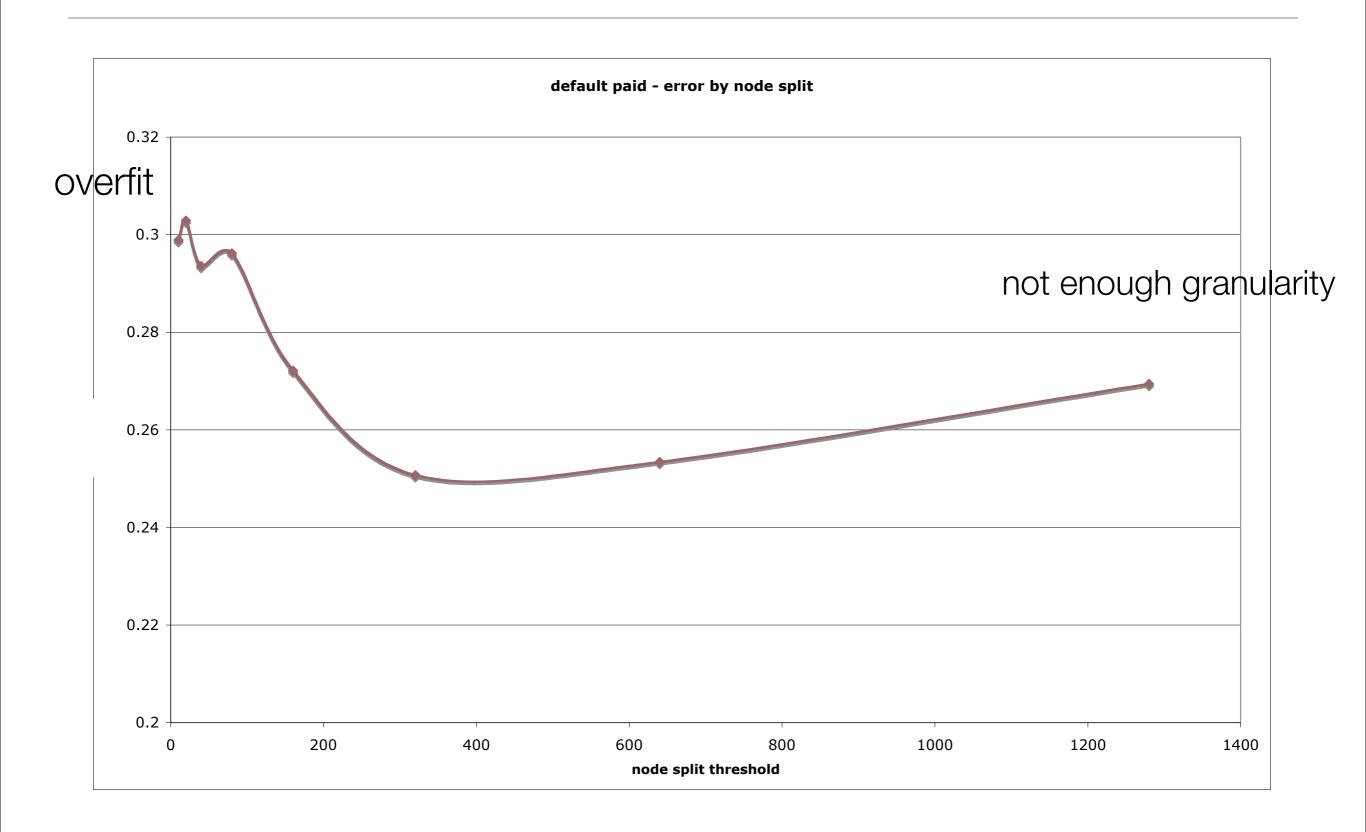
## (analysis of reposted loans)



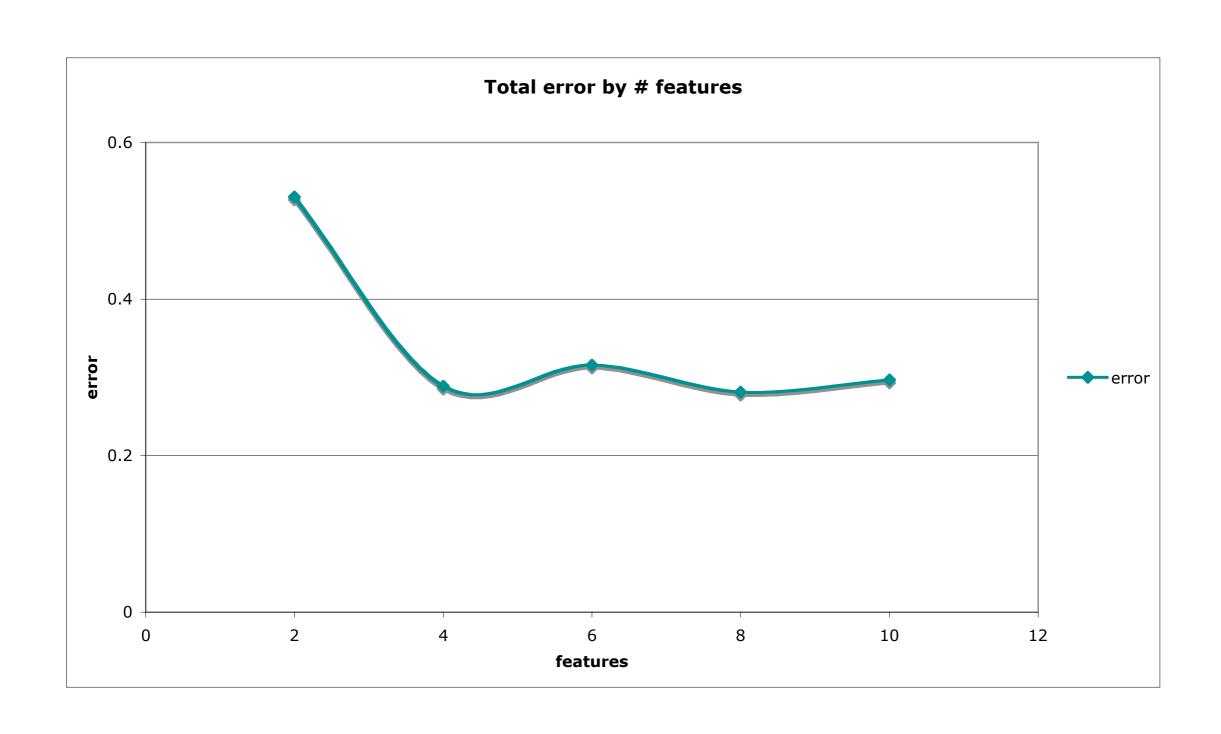
## analogous process for default / paid

- Priors closer to 50/50
- Lender can use DT to identify conditional probability of default given Profile X
- Important for Prosper: keep tabs on loans with high default risk

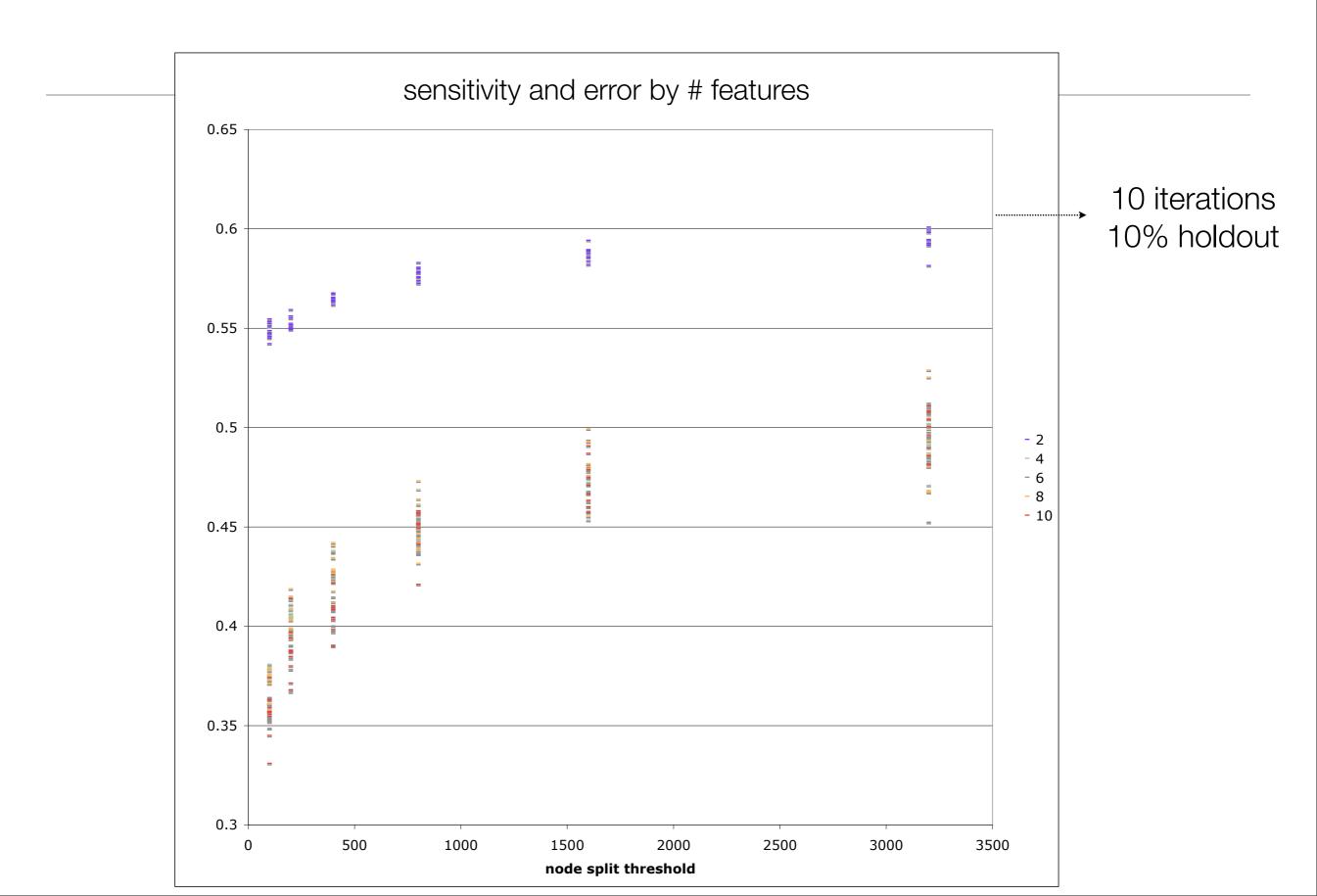
# optimal pruning level (default paid tree, 6 features)



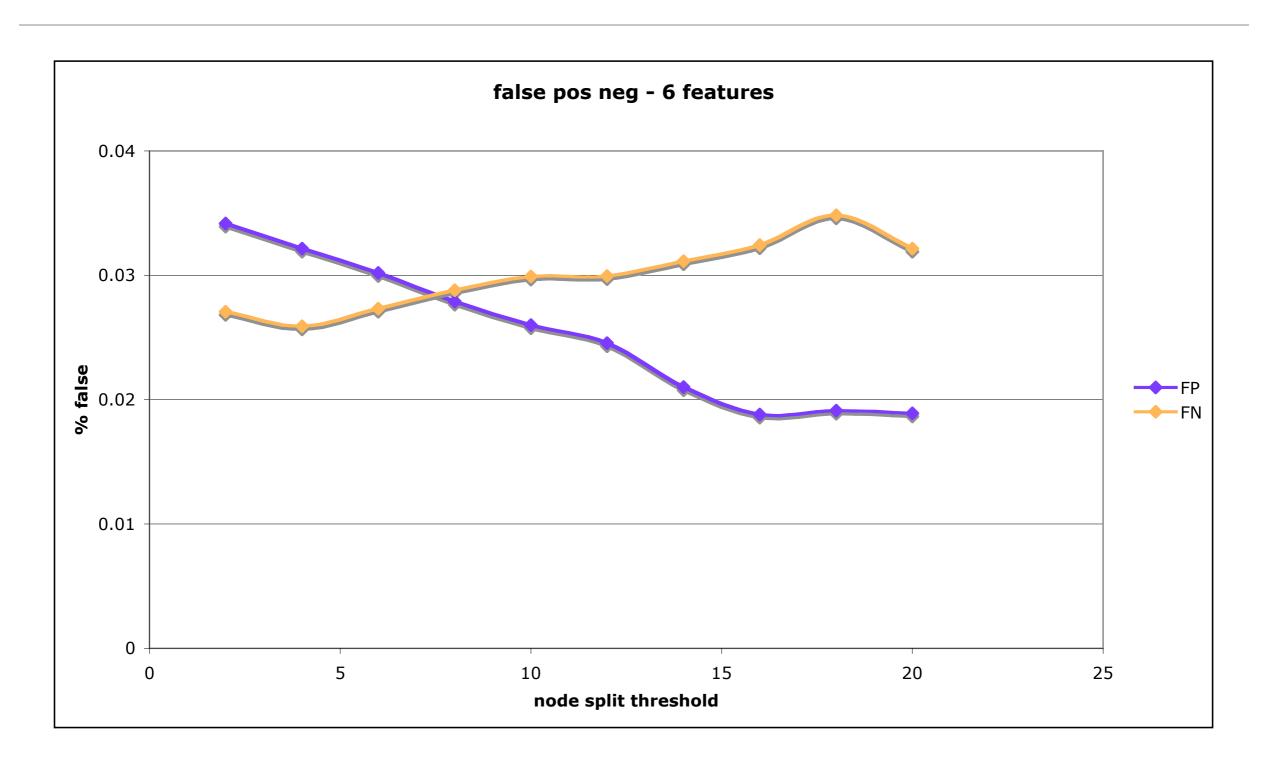
# as features are added, error rate down (loan / no loan, 200 split threshold)



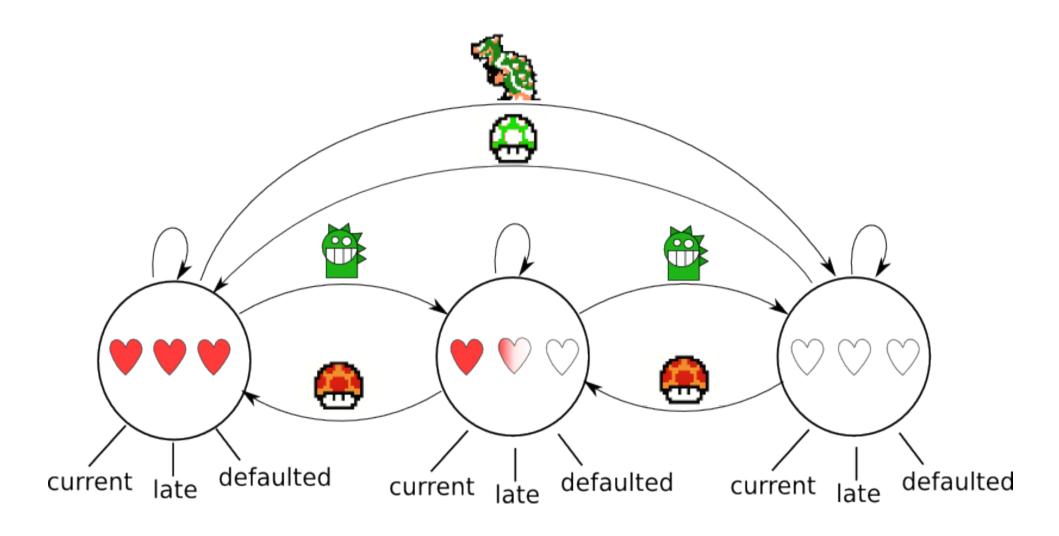
## adding features, reducing split level decreases error, sensitivity



# FP down, FN up as node split threshold increases (loan no loan, 6 features)

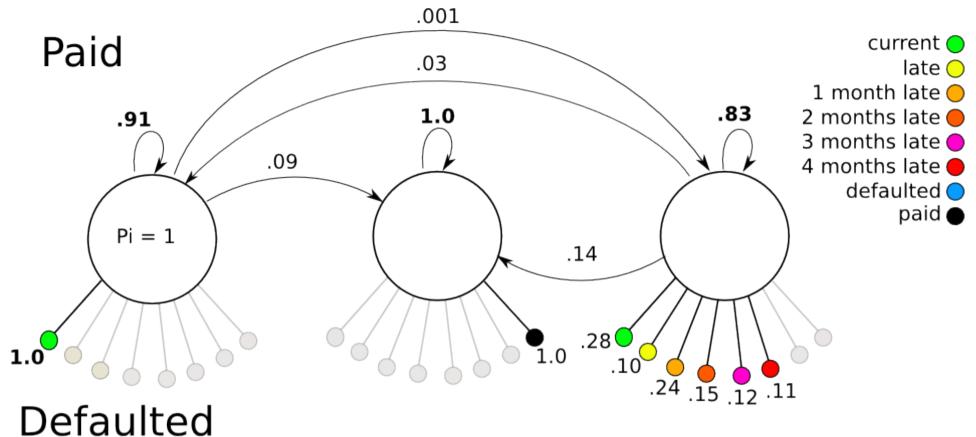


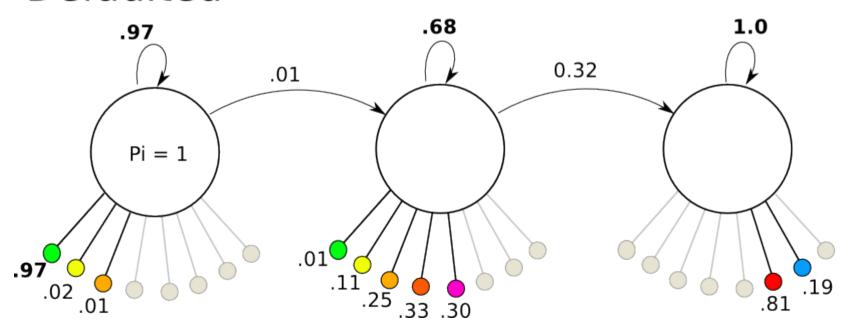
## Loan Performance HMMs

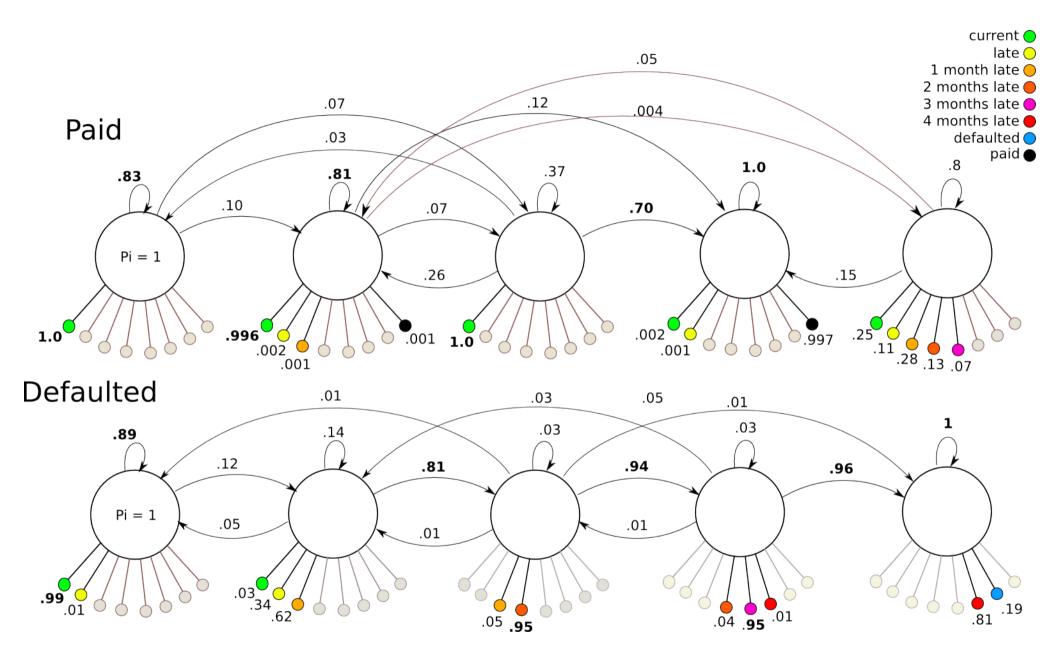


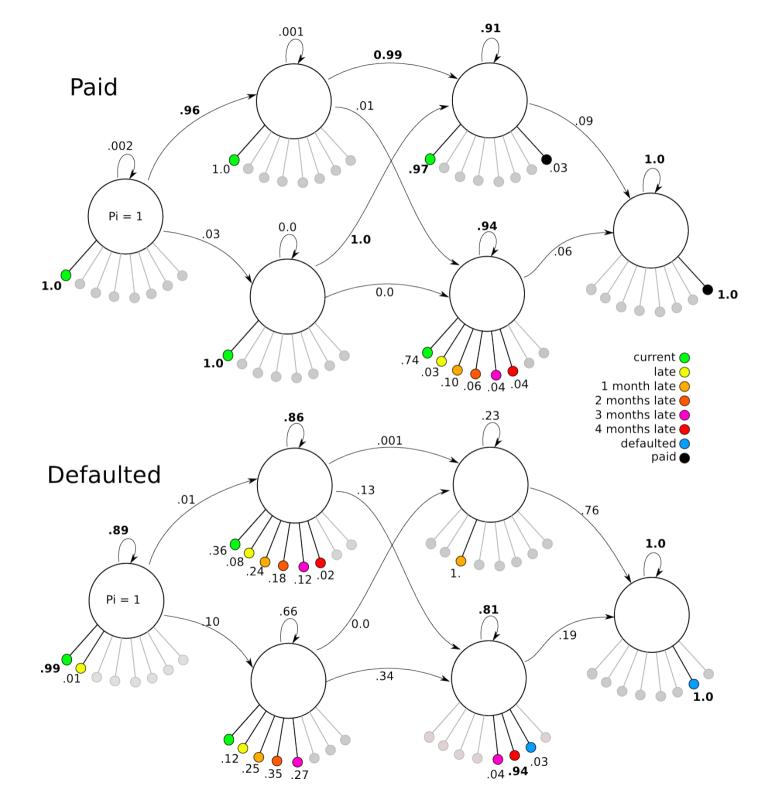
### **HMM Performance**

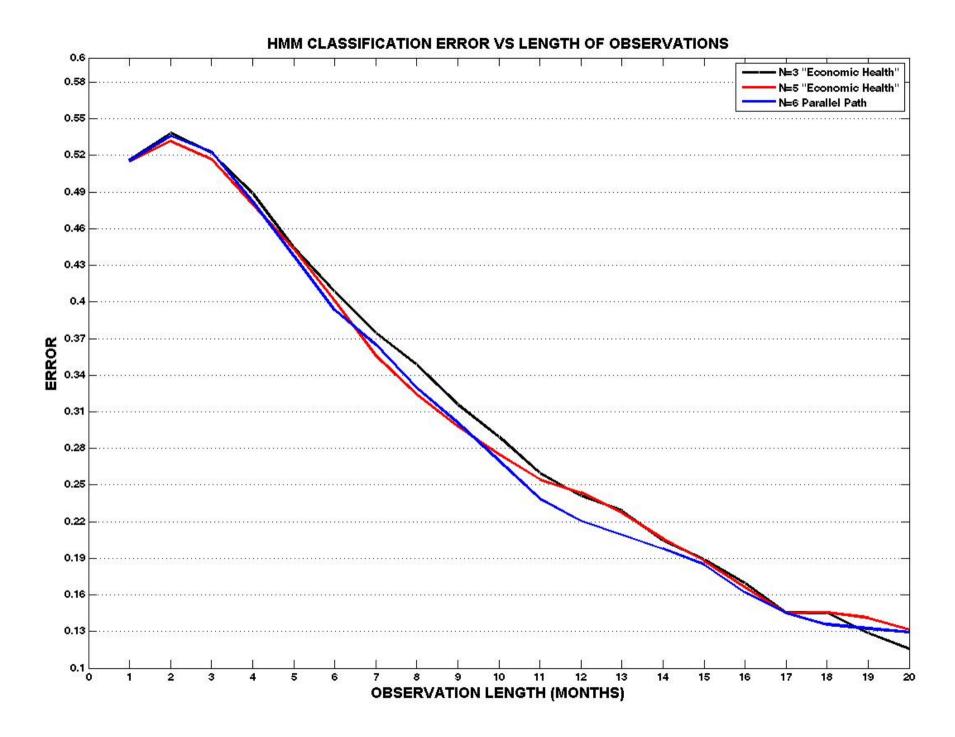
- Training 70%, testing 30% of loan performance data
  - Paid: 4365 sequences
  - Default: 3793 sequences
  - All sequences of varying length
- Model was verified and then tested











### **HMM** Results

- Why build a model for someone who will default?
  - Short term \ long term visibility of loan performance is important
  - Default behavior potentially mimics fraud
  - A lender may be well aware of loan performance but what about Prosper?
    - Improved customer service easier to monitor high risk loans, early contact of collection agency
    - Default Performance may mimic fraud (Prosper has problems with this).

## Improving HMM Performance

- Retrain specifying pi, currently start at state 1
- Create a single model of financial health
  - Train model using both paid / default data
  - Use Viterbi algorithm to estimate "proximity" to hidden state that best characterizes defaults (easy)
- Hierarchical HMM (complex)
  - Advantage is that HMMs can emit sequences of observations
    - A way to reduce error in early stages?
  - Reading
    - S. Fine, Y. Singer and N. Tishby, "The Hierarchical Hidden Markov Model: Analysis and Applications", Machine Learning, vol. 32, p. 41-62, 1998

# not all groups are created equal: refining social features

 Some groups have much higher funding rates than others (queried tier-2) description, sort by category, % members funded by individual group)

### highest % funded

Albuquerque

Aviation

Greece

Oil & Gas

Opthamology

Poverty Relief

Rhode Island

Rugby

Seattle

Space

Theatre

West Virginia

Veterinary

### best funded, popular groups

Florida

**Extended Families** 

Research & Analysis

Massachusetts

Travel

Accounting

Pennsylvania

Software

Financial Planning

Mortgage

Small & Medium Business

Investment Management

Family Owned

Virginia

**Financial Consultants** 

**Education & Training** 

Large Families

Catholic

### lowest % funded

**Mutual Funds** 

Neo- & Reform Hindus

Adoption Agencies

Air Quality

Amateur Beading

Big East Conference

Chemical

Construction

Deist DJs

**Equipment & Tools** 

**Estimating Fiction** 

Gambling

Glass Gliding Jewelry

Kentucky Kung Fu

Law Firms

Oceania Poetry

Printmaking

Recycling Refugees

Republicans

Security

Senior Citizens **Sporting Goods** 

Structural

Surety Bonds Symphony

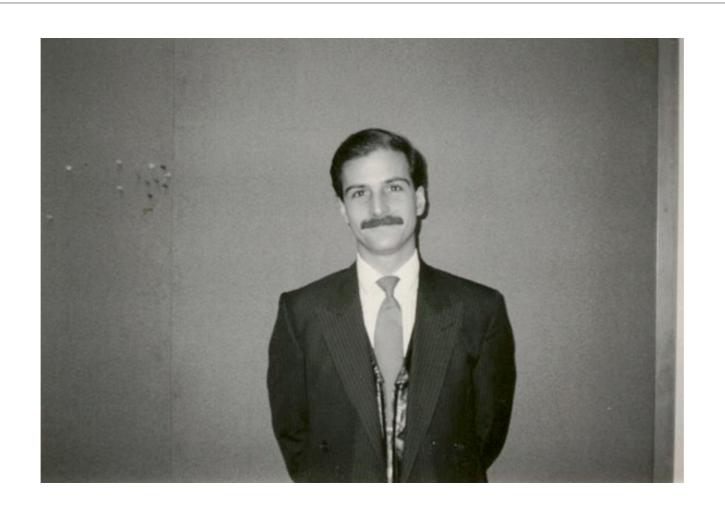
**Thailand** 

**Trading Cards United Kingdom** 

Utilities Yoga

Youth

# Using Amazon Mechanical Turk to classify images



## a human classification experiment

- Unlike banks, prosper lenders can weigh more that "just the numbers"
- Banks seek ROI; prosper lenders may have other motives (e.g. social good)
- Prosper lenders lack complex risk algorithms of banks
- Many borrowers may meet a lender's baseline criteria (e.g. FICO > 600) ... social criteria and profile assessment needed to decide how to allocate funds
- Holistic assessment of borrower profile: necessary and natural

## does a borrower seem "trustworthy"?

- Goal 1: image classification
- Goal 2: assessment of "trustworthiness"
- Does "trustworthiness" correlate with getting a loan?
- Here, only pilot of methodology and analysis
- Follow-up could use humans to train classifier or create feature vector

## amazon mechanical turk

#### Tag this image

#### Guidelines:

- Check the best description of what's in the image
  Check the best answer to the question: "Does this person (or the person who posted the image) look trustworthy?"
- · Your answer to the first question will be calibrated against others to ensure correct tagging

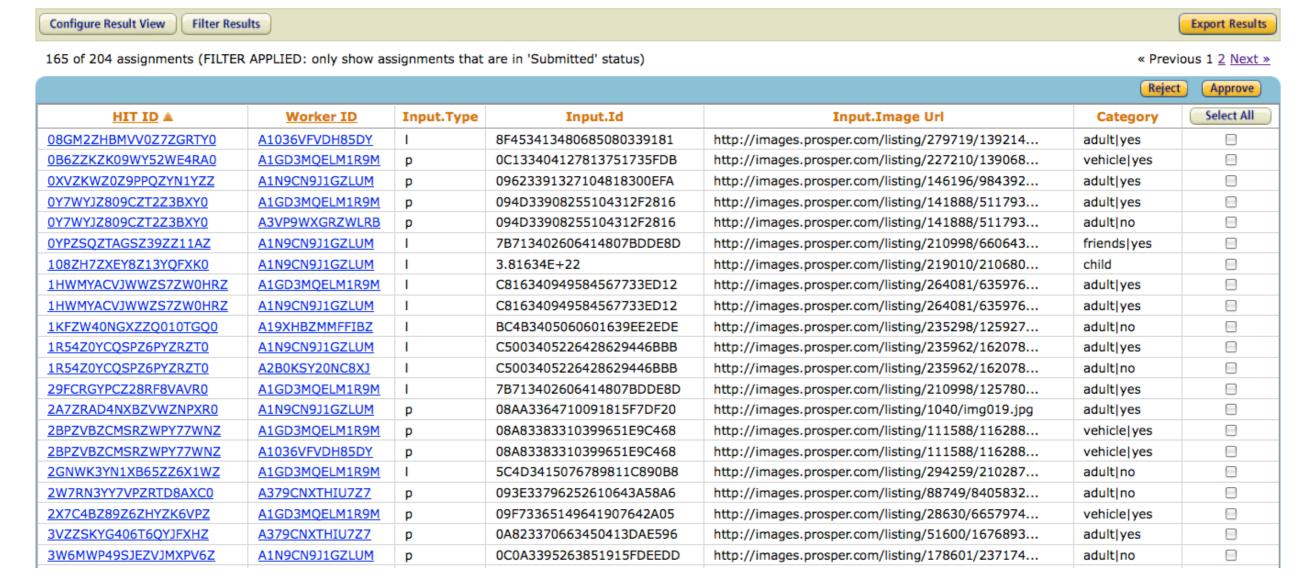
#### Image:



| What's in this picture?                                                                               |                                  |                                  |             |
|-------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|-------------|
| ○ Adult                                                                                               | <ul><li>Child/children</li></ul> | <ul><li>Friends/Family</li></ul> | ○ Landscape |
| <ul><li>Animal</li></ul>                                                                              | O House                          | <ul><li>Vehicle</li></ul>        | Other       |
| Does this person (or the person who posted the image) look trustworthy?   Trustworthy   Untrustworthy |                                  |                                  |             |

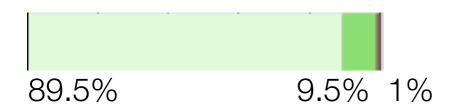
### data collection

- 200 images x 2 questions x 3 workers / image (used to check for consistency)
- 50% images from unfulfilled listings; 50% from paid-off loans



## consistency was good, especially for categorization

• CATEGORIES: confusion from label choice; 9.5% between children/family



• (1% disagreed on how to categorize e.g. a vehicle + people)





Multiple opinions good as fuzzy categorization?

## trust rating requires clarification

• TRUST: 11% disagreement, both contextual and subjective

Lack of context





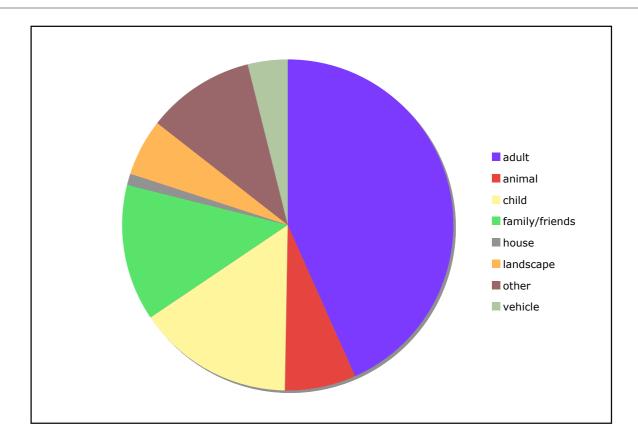
• Blurry photo, real distrust?



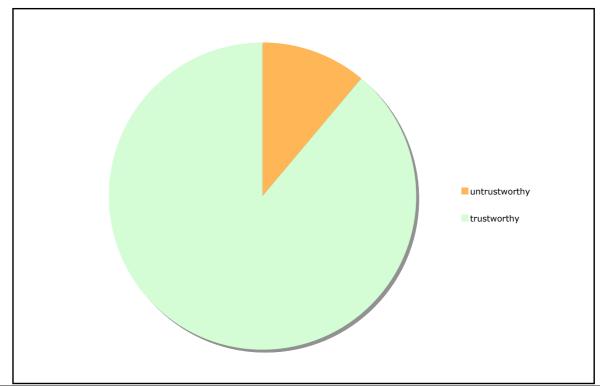


# categories and trust: 71% of photos have people

categories



trust



## no correlation between getting a loan and trust tag

- an image tagged "untrustworthy" was just as likely to have received & paid a loan as to have listed with no loan (no statistical difference)
- would adding contextualization (listing description) or refining the question phrasing help classification?
- Research question: how independent is judgment of "trustworthiness" from the stories built from contextual information (credit score, loan purpose), especially for quick (~8 seconds / photo) decisions?

## human classification: analysis

- human-augmented classification can work: consistency was high
- experiment design is important: vague questions yield vague results
- future work could collect larger sample; use as a feature vector
- also, text / spelling analysis