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Abstract

Independence diagrams are a graphical way of expressing the conditional independence
relationships among a set of random variables. They cannot encode every possible form
of conditional independence but they go a long way toward this end. They are also called
“Bayesian networks,”
networks. This paper discusses how to read and write independence diagrams. The pre-
sentation is based on Pearl (1988).

which unfortunately suggests inappropriate comparisons to neural

1 Introduction

The rules of probability theory require a certain amount of regularity in the conditional inde-
pendence relationships among a set of random variables. For example, if A is independent of B
given (', then B is independent of A given C. If A is independent of both B and D given C',
then A must be independent of B given both C' and D, etc.

Independence relationships are instrumental for simplifying calculations, but unfortunately they
can be tedious to determine this way. Therefore it is a surprising and useful fact that the condi-
tional independence relationships between a set of random variables can be elegantly expressed
with a graph.

An independence diagram is a graph where each node represents a random variable. The
conditional independence relationships between the variables are given by the graph-theoretic
properties of separation and d-separation, hence can be immediately read off of the graph.

2 Undirected graphs

The simplest case is when all edges in the graph are undirected. The rule is:

If there is no path from A to B, then variables A and B are independent.



For example, in this graph:

A and B are dependent.

The converse of this rule is not true. If two variables are independent, then there may still
be a path between them. No independence diagram can express all independence relationships
perfectly, so we allow them to err conservatively. A path in the diagram therefore means “these
variables could be dependent.” A fully connected diagram is always “correct,” in this sense,
though not very useful. A graph is useful because of the edges that it does not have.

When the value of a variable is observed or otherwise known, then it is removed from the graph
along with all edges connected to it. Since some paths may be broken, this expresses conditional
independence. So if C' is given, we get this graph:

A

B—D/

where A and B are independent. Therefore, the original graph says that A and B are condi-

E

tionally independent. Mathematically:
p(A|B, C) = p(A[C)

and

p(BlA,C) = p(B|C)

In the same graph, A and B are also independent given D alone, but they are not independent
given F alone.

Another way to think about this rule is that when a variable is observed, it blocks the flow
of information through it. Two variables are independent when all paths between them are
blocked. 1If all paths between A and B are blocked by a set of variables C;..C'y, then those
variables are said to separate A and B in the graph. In this way, conditional independence
between random variables maps onto separation in a graph. For example, you can check that
the consistency properties mentioned in the introduction are always satisfied by separation in a
graph.



The advantage of purely undirected independence diagrams is that the conditional independence
relationships are simple. The disadvantage is that there is an important kind of conditional
independence relationship that they cannot express, as discussed in the next section.

3 Directed graphs

Let z = 2y, where random variables # and y are independent. The undirected independence

diagram is
X y

N

Z

Why does there have to be an edge between = and y? Because if z is observed, then = and y
are dependent (z must be z/y). Unfortunately, the resulting graph is not very interesting; it
asserts no independence relationships at all.

An undirected diagram is always a superset of the possible dependencies that can exist. So if a
variable depends on the joint outcome of several other variables, then those other variables must
be fully connected. What is missing is the ability for new dependencies to appear when we receive
certain information. This is what directed edges will do for us. The directed independence
diagram for this example is simply

X y

Z

which asserts exactly the independence relationship we want: x is independent of y unless z is
given.

The independence rules for directed graphs are best stated by example. In addition to the
concept of a path being blocked by an observation, we now have to have the concept of a path
being activated by an observation. A path may go against the arrows: the arrows only determine
when a path should be blocked vs. activated.



Here are the cases where a path between A and B would be blocked by observing C' (they would
otherwise not be blocked):

A C B

A C B

A C B

and here are the cases where a path between A and B would be activated by observing C' (they
would otherwise be blocked):

A C B

A B

This is a more formal way to say it:

A path between A and B is blocked if there is a node C' such that

1. the path has converging arrows at (' and none of (' or its descendants are given,

or

2. the path does not have converging arrows at ' and C' is given.

If all paths between them are blocked, then A and B are independent. This kind of
separation is called d-separation.

A descendant of C' is any node on a directed path from C'. The reason that we have to watch
out for descendants of C' is clear from the z = xy example; suppose we have another random
variable s which is the sign of z (thus making s a descendant of z). If we observe s = —1, then
even if we don’t know z, the variables x and y are dependent, since they must have different

signs.



As a more detailed example, from this graph:

A\C/ N
NS

we can deduce that

e A isindependent of B.

e [/ may be dependent on F.

Given (', F is independent of F'.

Given both €' and G, K may once again be dependent on F.

Given (', H is independent of A.

Given F', H may be dependent on A.

e Given I, A may be dependent on B.

Mathematically, this diagram tells us that the joint distribution can be factored as:
p(A. B,C, D, E, F.G, H,I) = p(A)p(B)p(C|A, B)p(D|C)p(E|D)p(F|C)p(G|E, F)p(H|G)p(I|G)

This kind of factoring is true for any directed independence diagram with no directed cycles:
each node is conditioned on the nodes pointing into it. The conditional independence statements
listed above can also be deduced from this factoring. Thus directed graphs are simply another
way to express a factoring of the joint distribution.

Often there are many directed graphs which encode the same conditional independence relation-
ships. In this case, the arrows are usually chosen to reflect the flow of time or causality in the
problem, which makes the conditional independence rules easier to remember (as in the z = zy
example). It also naturally avoids directed cycles. Of course, changing the arrows will change
the implied factoring of the joint distribution.

An advantage of purely directed independence diagrams is that they have a simple one-to-one
relationship with factorings of the joint distribution. This makes them easy to read and easy to
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write. A disadvantage is that some conditional independence relationships cannot be expressed
using directed edges alone. For example, this undirected graph:

IB//////\\\\\}3
N

has no equivalent directed graph (without a directed cycle), i.e. a graph that expresses exactly
the same set of conditional independence relationships. Hence both directed and undirected
edges are useful. It is possible to have both in the same graph, but the independence rules are
involved so we will not discuss them here.

4 Examples

All of the statistical models we will consider in this course can be expressed naturally using
independence diagrams. For example, a two-class recognition system can be expressed as:

01 0

I ) I3

C1 Co C3

where 6, and 6, are the parameters for each class, xy..x3 is the data to be classified, and ¢;..c3
are the classifications of the data. From the diagram, we can see that the data are independent
once we know the class parameters, the class parameters are independent until we observe the
data, etc.

The hidden Markov and linear dynamical system models we will do later both have a chain-type



independence diagram:

S1 = 59 = 53 = 0 0 0 —= ST

X1 ) X3 rr

The data is zy..x7 and the “hidden state” is sy..s7. The fact that the conditional independences
have a chain structure will be the key to efficient probabilistic inference with these models.

5 Conclusion

The beauty of independence diagrams is that they impose minimal constraints on the joint
distribution of variables, yet capture virtually everything you need to know to perform efficient
inference. In particular, they tell you which variables should be relevant to any particular
question.

Independence diagrams also tell you which variables, if known, would create the most indepen-
dence between variables which are still unknown. Efficient algorithms for probabilistic compu-
tation work by exploiting these maximal cut-points in the independence graph.

Directed independence diagrams are also a convenient way to express a particular factoring of
the joint distribution, and therefore express a parameterization of that distribution in terms
of conditional probabilities. Thus there is great interest in Bayesian network tools which can
infer the joint distribution of a data set, given prior knowledge in the form of an independence
diagram.
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