The use of Expectation Maximization (EM) for finding the
parameters of a 2D Gaussian given missing data
(Example 2, from DHS)

Extra notes for MAS622J/1.126J by Rosalind W. Picard

Let D be a set of data, here containing four samples. One sample has an element that is
either missing, known to be corrupted, or is otherwise “bad”, D, = x4y = “*".
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A 2-D Gaussian has four parameters, 6, to estimate, for which we make the reasonable starting
guess 0°:
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Our goal is to iteratively estimate 6 until its values converge.

The estimation process consists of two steps: (1) E-step and (2) M-step. In the E-step we
wish to formulate the log likelihood for all the data, marginalizing over the possible values for
the unknown data. We assume there is a known set of parameters: for this, we use our current
best guess of the parameter vector.
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Note that x4 is independent of all the other z;; € D, except for possibly x4s.
Now let ¢ = [ p(z41, 242]6°)dzs1 = p(x42|6°). Applying Bayes rule, we get:
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Also, since ¢ is not a function of the bad data, x4;, we can pull it out of the integral:
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Rewrite the log term in the integral above:
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Now we can separate out the terms that involve the bad data, x4, and rewrite () as:
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where I1] contains the remaining two terms involving —x3, and 2x4 ;. Note first that %
multiplying the integral causes that whole term to go to 1. Subsequently,
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Now, let’s look at that last term:
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The second integral above consists of an odd multiplier, Qwa‘Ulzﬂ, times an even exponential
1
(even with respect to x41). Thus, the integral is odd and integrates to zero. This leaves only
the first integral:
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Let z = % so dxy = \/Edz, and cancel the % in the numerator and denominator. Then:
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Integral tables come in handy at this point. From standard tables, we find these:
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Using these relationships, we simplify:
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Now, return to (1) substituting in this simplified 711 to write Q:
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Equation (2) is called the E-step, the first step of Expectation-Maximization.
Let’s expand the first term in (2) and then we will be ready for the M-step, in which we’ll
maximize Q:
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Now we're ready for the Maximization (M-step):
0! = arg max Q(0;6°)

We need to take derivatives of () w.r.t. each of its four parameters, set the derivatives equal
to zero, and solve for the new parameter values.
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Similarly, solving dQ(gf ) — 0 leads to the solution o5 = 2.
Now we have completed the M-Step and we have the next iteration of our estimate of the
parameters:
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We use this to form Q(6;0') and go back to the beginning of the E-step. Repeat this process
until the parameters converge.

The E-M algorithm guarantees that the log-likelihood of the good data (with the bad data
marginalized) will increase monotonically.

Fun facts: E-M is a Maximum Likelihood method, not a fully Bayesian method. Also, the
Baum-Welch (forward-backward) algorithm used for training HMM’s is an example of the E-M
method.



