Problem Set 1 Solutions

MAS.622J/1.126J: Pattern Recognition and Analysis
Originally Due Monday, 18 September 2006

Problem 1: Why?

a.

b.

Describe an application of pattern recognition related to your research.
What are the features? What is the decision to be made? Speculate on
how one might solve the problem. Limit your answer to a page.

In the same way, describe an application of pattern recognition you would
be interested in pursuing for fun in your life outside of work.

Solution: Refer to examples discussed in lecture.

Problem 2: Probability Warm-Up

Let X and Y be random variables. Let px = E[X] denote the expected value
of X and 0% = E[(X — px)?] denote the variance of X. Use excruciating detail
to answer the following:

a. Show E[X + Y] =E[X]| +E[Y].

b. Show 0% = E[X?] — u%.

¢. Show that independent implies uncorrelated.

d. Show that uncorrelated does not imply independent.

e. Let Z = X +Y. Show that if X and Y are uncorrelated, then 0% =

2 2
ox + oy

f. Let X; and X5 be independent and identically distributed continuous
random variables. Can Pr[X; < Xs] be calculated? If so, find its value.
If not, explain.

g. Let X7 and X5 be independent and identically distributed discrete random
variables. Can Pr[X; < Xs] be calculated? If so, find its value. If not,
explain.

Solution:



a. The following is for continuous random variables.

A similar argument

holds for discrete random variables.

EX+Y] =

//(fc+y)p(x,y) dz dy
//wp(m7y)dxdy+//yp(%y)d-rdy
/wp(:v) d$+/yp(y) dy

E[X] +E[Y]

b. Making use of the definition of variance and the previous part, we have:

ox =

E[(X - MX)Q]

E[X? - 2ux X + p%]
B{X?] — B2y X] + B ]
BLY] — 205 ELX] + 4
E[X?] = 2uxpx + pi
E[X?] - 2ux + ik
E[X?] - p%

c. Let X and Y be independent continuous random variables (a similar ar-
gument holds for discrete random variables). Then,

E[XY]

= //ryp(%y) dx dy
//xyp y) dx dy
/rcp(af) dx /yp(y) dy

E[X]E[Y]

d. Let X and Y be discrete random variables such that X takes on values
from {0,1} and Y takes on values from {—1,0,1}. Let the probability

mass function of X be

pelzr=0] =
pelr=1] =

0.5
0.5

and the probability mass function of Y conditioned on X be

Pyla [y

=—llz=0] = 05



Given the above, and the fact that p, [z, ]

pac,y[zzovyzo =
Peylt=0,y=1] =

]
]
]
Payle=1ly=-1 =
Doyl =1,y =0]

1]

Thus, we see that p, [z, y] # pz[x]p

= pylay]Z] pelx], We get

0.25

0.25

0.125
0.25
0.125
0.125
0.25
0.125.

y[y] and X and Y are not independent.

independent. However, since XY is identically zero, we also get

cov(X,Y) = 0%y

E[(X - MX)(Y - MY)]

= E[XY] - uxpy
= E[0] - (0.5)(0)
= 0-0

= 0.

Therefore, X and Y are uncorrelated but not independent.

e. Given that Z = X + Y and that X and Y are uncorrelated, we have

o’% = E[(Z- MZ)]
= E[Z?] -
(ux + py)?

= E[X?4+2XY +Y? -

[
[

= E[(X+ Y) ] —
[

= E[X?+2E[XY]+E[Y?] -

(Wi + 2uxpy + p3)
Wx — 2uxpy — [y



= (BIX?] - uk) + 2(BIXY] = pxpy) + (E[Y?] = u3)
= 0%k +20%y +o}

= a§( + 052/,
where only the last equality depends on X and Y being uncorrelated.

f. Given that X; and X, are continuous random variables, we know that
Pr[X; = 2] =0 and Pr[X; = z] = 0 for any value of x. Thus,

PI‘[Xl < X2] e PI‘[Xl < XQ}

Given that X; and X5 are i.i.d., we know that replacing X; with X5 and
Xo with X7 will have no effect on the world. In particular, we know that

Pf[Xl < Xz] = PI‘[XQ < Xl}
However, since probabilities must sum to one, we have
PI’[X1 < XQ] + PI[XQ < Xl] =1.

Thus,
1

PI‘[Xl S XQ] = 5

g. For discrete random variables, unlike the continuous case above, we need

to know the distributions of X; and Xs in order to find Pr[X; = z] and

Pr[X, = z]. Thus, the argument we used above fails. In general, it is not

possible to find Pr[X; < X,] without knowledge of the distributions of
both X; and Xs.

Problem 3: High-Dimensional Probability

Let X = (X1, X5, ..., X,) be a random vector, where the {X;} are independent
and identically distributed (i.i.d.) continuous random variables with a uniform
probability density function between 0 and 1:

() = lLfor0<uz; <1
piTi) = 0, otherwise

Each value x of the random vector X can be considered as a point in a n-
dimensional hypercube. Since the probability density function of X is uniform,
volume in this n-dimensional space corresponds directly to probability. Find
an expression for the percentage of a n-dimensional hypercube’s volume located
within € of the hypercube’s surface. Plot this percentage as a function of n for
1 < n < 100000 and € = 0.0001. What do your findings about high-dimensional
hypercubes tell you about random variables?

Solution: The volume, V,,(L), of a n-dimensional hypercube with sides of
length L is
V(L) = L".
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Figure 1: The percentage of a n-dimensional unit hypercube’s volume within e
of the surface as a function of n.

Thus, the ratio, R, (¢), of the volumes of a n-dimensional hypercube with sides
of length 1 — 2¢ and an n-dimensional hypercube with sides of length 1 is
V(1 —2 1—2¢)"
Ry~ V=29 _ (-2
V(1) 1

=(1-—2¢)".

Therefore, the percentage, P, (€), of a n-dimensional unit hypercube’s volume
located within e of the hypercube’s surface is

P,(e)=1—R,(e) =1—(1—2¢)".

See Figure 1.

This result shows that randomly choosing a high-dimensional vector in which
each element is i.i.d. and uniform will with high probability result in a point
near the edge of the ‘box’ containing all the points being considered. It also hints
at the power of considering long strings of i.i.d. variables. See, for example, the
asymptotic equipartition theorem (AEP), which we may touch on later in class.

The Python code used to create Figure 1 is

from matplotlib.numerix import =x
from numarray import x
from pylab import plot, subplot, legend, axis, xlabel, ylabel, text, show

Error.setMode( all=None, overflow=’warn’, underflow=’ignore’, dividebyzero='warn’



import LinearAlgebra as la

e = 0.0001

n = arange(1,100001)

p=1— (1-2%e)**n

plot (n,p)

axis ([0,n[—-1],0,1.2])

xlabel ("number of dimensions’)

ylabel (’percentage of volume’)

text (0.8«n[—1], 1.1, r’$\epsilon=0.0001%")
show ()

The Matlab code used to create Figure 1 is

e = 0.0001;

n= 1:100001;

p=1-(1-2xe). n;

plot(n,p);

ns = size(n);

axis ([0,n(ns(2)),0,1.2]);

xlabel ("'number of dimensions’);

ylabel (’percentage of volume’);

text (0.8+%n(ns(2)), 1.1, ’\epsilon=0.0001");

Problem 4: Teatime with Gauss and Bayes

L _((1/—;;>2+(I—1§)2>
2a 2
Let p(x,y) = W@ B .
a. Find p(z), p(y), p(z|y), and p(y|z). In addition, give a brief description

of each of these distributions.

b. Let 4 =0, a = 40, and 8 = 3. Plot p(y) and p(y|z = 13.7) for a reasonable
range of y. What is the difference between these two distributions?

Solution:

a. To find p(y), simply factor p(z,y) and then integrate over x:

| peyas

— 00

[eS) (y=—w? | (z—9)?
B / 1 7( T )dx

o 27raﬂe

® 1 _we=w? _@ow?
= e 222 e 282 (dx
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p(y)




1 _w-w? [ 1 _==w)?
= e 2aZ e 2% dx
V2ra? oo /2732
1 _(1/—11)2
= e 2a2

The integral goes to 1 because it is of the form of a probability distribution
integrated over the entire domain. To find p(z|y), divide p(z,y) by p(y):

p(zly)

Finding p(z) and p(y|x) follows

essentially the same procedure, but the

algebra is more involved and requires completing the square in the expo-

nent.
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To find p(y|z) we simply divide p(z,y) by p(z). In finding p(z), we already
know the form of p(y|z) (see the longest line in the derivation of p(x)
above):

p(z,y)
plylz) = (@)
1 \ EE
= —€
27r;§27f;2
_ N(OZQSCJFﬁQ# a2 )

a2 + 62 ’ 042 + /62
Note that all the above distibutions are Gaussian.

. The following Python code produced Figure 2:

from matplotlib.numerix import =

a2z+l32u
a2+p2

2232

aZ+p2

dy



from numarray import
from pylab import plot, legend, axis, xlabel, text, show
Error.setMode( all=None, overflow=’warn’, underflow=’ignore’, dividebyzero="w

def normal(x, mean, var)
return (1.0/sqrt (2xpixvar))xesx(—((x—mean)*%2)/(2xvar))

= 0.0
= 40.0
3.0
= 13.7

® oo B
I

y = arange(—150, 150, 1)

mean = ((ax*2)*xx + (b*x2)*xm)/(ax*2 + bxx2)
var = ((axb)x%2)/(ax*x2 + bxx2)

p-y-given_x = normal(y, mean, var)

p-y = normal (y,m,a*%2 + bxx2)

plot(y,p.-y_given_x)

plot (y,p-y)

legend (("p(y[x)", 'p(y)"))
axis ([y[0],y[—1],0,0.15])
xlabel ('y’)

text (—100,0.12, r’$\mu=0$")
text (—100,0.11, r’$\alpha=40%")
text (—100,0.1, r’$\beta=3$")
show ()
. The following Matlab code produced Figure 2:
m= 0.0

a = 40.0

b= 3.0

x = 13.7

y = —150:1:150

mean = ((a"2)xx + (b"2)*xm)/(a"2 + b"2)

var = ((axb)"2)/(a"2 + b"2)

p-y-given_x = (1.0/sqrt(2«pixvar))xexp(—((y—mean)."2)/(2xvar))
var2 = a"2 + b"2

p.y = (1.0/sqrt (2xpixvar2))sexp(—((y-m)."2)/(2*var2))

hold off

plot (y,p-y-given_x,’b’)
hold on

plot (y,p-y,’r’)
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Figure 2: The marginal p.d.f. of y and the p.d.f. of y given z for a specific value
of z. Notice how knowing = makes your knowledge of y more certain.

legend ("p(y[x)", 'p(y)’)

sy = size(y)

axis ([y(1),y(sy(2)),0,0.15])
xlabel ('y’)

text (—100,0.12, *\mu=0")
text (—100,0.11, ’\alpha=40’)
text (—100,0.1, '\ beta=3’)

Problem 5: Covariance Matrix

64 —25
a. Verify that Ax is a valid covariance matrix.

b.

Find the eigenvalues and eigenvectors of A x by hand. Show all your work.
Write a program to find and verify the eigenvalues and eigenvectors of A x.

We provide 200 data points sampled from the distribution A(0, Ax).
Download the dataset from the course website and plot the data points.

10



Project the data onto the covariance matrix eigenvectors and plot the
transformed data. What is the difference between the two plots?

Solution:

a. The matrix Ax is a valid covariance matrix if it is symmetric and positive
semi-definite. Clearly, it is symmetric, since A% = Ay. One way to
prove it is positive semi-definite is to show that all its eigenvalues are
non-negative. This is indeed the case, as shown in the next part of the
problem.

b. We can find the eigenvectors and eigenvalues of Ax by starting with the
definition of an eigenvector. Namely, an vector e is an eigenvector of Ax
if it satisfies

AXe = )e

for some constant scalar A\, which is called the eigenvalue corresponding
to e. This can be rewritten as

(AX — /\I)e =0.

This is equivalent to
det(Ax — \I) =0.

Thus, we require that
(64— \)* —252 =0

By inspection, this is true when A = 89 and A = 39, both of which are
non-negative, thus confirming that Ax is indeed a positive semi-definite
matrix.

To find the eigenvectors, we plug the eigenvalues back into the equation
above to get

64—89 —25 a 25 25 [a 0
(Ax=89T)e =1 = o5 64—89Hb]_{—25 —25Hb]_[0}’

which gives a = —b. Normalized, this results in the eigenvector

_ 1
e = [ ‘| .
Similarly, A = 39 gives

64—39 —25 a 25 25 ][ a 0

which gives @ = b. Normalized, this results in the eigenvector

11
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c. The following Python program prints out the eigenvectors and eigenvalues

of Axi

from matplotlib.numerix import =
from numarray import x

from pylab import plot,
from LinearAlgebra import =
Error.setMode (all=None,

L = array ([[64,

print eigenvectors (L)

of Axi

—25],]

subplot ,

legend , axis

—25, 64]])

e. The following Python program generated Figure 3:

from matplotlib.numerix import =
from numarray import =

from pylab import plot,
from LinearAlgebra import =x
Error.setMode( all=None,

f = file (" psl.dat”,

subplot ,

legend , axis

([[64,—-25],[—25,64]])

p = f.readlines ()
for i in range(len(p)

a
u,v) = eigenvectors (C)

77r77)

temp = p[i].split
pli] = [float (tem
q = zeros(p.shape, ’f
for i in range(len(p)
q[i][0] = dot(p[i
ali1[1] = dot(p[i

q = transpose(q)
p = transpose(p)

subplot (211)

[0],p[1])

scatter (p
—40,40, —

axis ((

40,40))

)
(
p

[0]

")
) .
i],v][0
i],v[1])

)

)

1

')
)

2

float (temp [1])]

)

)

xlabel ,

overflow="warn’, underflow="ignore ’,

The following Matlab program prints out the eigenvectors and eigenvalues

xlabel |

overflow="warn’, underflow="ignore ’,

ylabel ,

)

ylabel |

)

text ,

text ,

show ,

show ,

t

dividebyzero="v

t

dividebyzero="w



title (’Original Data’)
xlabel ('x7)

ylabel (y’)

subplot (212)

scatter (q[0],q[1])

axis ((—40,40,—40,40))

title (' Transformed Data’)
xlabel (" first eigenvector )
ylabel (’second eigenvector ’)
show ()

. The following Matlab program generated Figure 3:

[[64,—25]

C = ;[ —25,64]];
[u,v] = eig(C);

p = load (’psl.dat’);

sp = size(p);

q = zeros(sp);

for i = 1:sp(1)
q(i71) :p(ia:)*u( a]-);
q(i,2) =p(i,)*u(:,2);

end

q=q’;

pP=0p;

subplot (211)

scatter (p(1,:),p(2,:))

axis ([—40,40,—-40,40])

title (’Original Data’)
xlabel ('x")

ylabel ('y’)

subplot (212)

scatter (q(1,:),q(2,:))

axis ([—40,40,—-40,40])

title (’Transformed Data’)
xlabel (" first eigenvector ’)
ylabel (’second eigenvector ’)

The second plot in Figure 3 shows the data rotated to align with the
eigenvectors of the data’s covariance matrix.
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Problem 6: Distribution Linearity
Let X7 and X5 be i.i.d. according to

() = lfor0<uz; <1
piTi) = 0, otherwise

Let Y :Xl +X2

fori=1,2

a. Find an expression for p(y). Plot p(y) for some reasonable range of y.

b. Find an expression for p(z1|y). Plot p(z1|y) as a function of x; with y
treated as a known parameter for some reasonable value of y and some
reasonable range of x;.

c. Repeat the parts above, this time letting X; and X5 be i.i.d. according
to N(0,1).

d. What was the point of this problem? Hint: check out the title.
Solution:

a. From basic probability theory, we know that the probability density func-
tion of the sum of two independent random variables is the convolution of
the two probability density functions. So,

Py(y) = (Pay *P2s)(y)
— [ i@ty a)ds
1
= / 1pe,(y —x)dx
0
1
= /pxg(y—x)dx
0
1
_ / 1 forOg.y—xSI de
0 0 otherwise
1
/ 1 fory—.lgxgy o
0 0 otherwise

min(1,y)
= / ldz

max(0,y—1)

= max{0, min(1,y) — max(0,y — 1)}

0 fory <0
B Y for0<y<1
B 2—y for1<y<?2
0 for y > 2

This p.d.f. is shown in Figure 4, which was produced using the following
Python program:
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from matplotlib.numerix import =
from numarray import s
from pylab import plot, subplot, legend, axis, xlabel, ylabel, text, show

)

Error.setMode( all=None, overflow=’warn’, underflow=’ignore’, dividebyzero="w

plot ([~1,0,1,2,3],[0,0,1,0,0])
axis([—1,3,-0.5,2])

xlabel ('y’)

ylabel ("p(y)’)

show ()

This p.d.f. is shown in Figure 4, which was produced using the following
Matlab program:

hold off

subplot (111)

plot ([-1,0,1,2,3],[(0,0,1,0,0])
hold on

axis([—1,3,-0.5,2])

xlabel ('y’)

ylabel ("p(y)’)

. Using Bayes’ Rule, we have

Pzy,y (z1,y)
py(y)
Py|a, (y|a:1) Pz, (301)
py(y)

pI1|y(x1 |y) =

We already know p,(y) and p, (z1). Finding py,, (y|z1) is a matter of
realizing that y = x1 + x2 implies that, given x1, y is simply x5 offset by
a constant. Thus,

Py|zq (ylzl) = Pz, (y - Il)

and

pwz(y_ml)pw1<x1)
py(y)
for0<y<land0<z; <y
L forl<y<2andy—1<z; <1

y
otherwise

Payy(z1ly) =

Il
‘ < =

SO
|

See Figure 5, which was produced by the following Python program:

from matplotlib.numerix import =
from numarray import x
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from pylab import plot, subplot, legend, axis, xlabel, ylabel, text, show

Error.setMode (all=None, overflow=’warn’, underflow=’ignore’, dividebyzero="w

subplot (211)

for y in arange(0.1, 1.1, stride=0.1)
x = array ([0,0,y,y,1,1])
Px_given.y = array([0,1.0/y,1.0/y,0,0,0])
plot (x,Px_given_y)

xlabel (r’$x_1%")
ylabel (r’$p(x_1 \ given \ 0<y<1)$’)
axis ([—0.1,1.1,0,12])

subplot (212)

for y in arange (1.0, 2.0, stride=0.1)
X = arra}’([ovovy ly— 17171})
Px_given_.y = array([0,0,0,1.0/(2—-y),1.0/(2—y),0])
plot (x,Px_given_y)

xlabel ("$x_18% 7)
ylabel ("$p(x_1 \ given \ 1<y<2)$’)
axis ([—0.1,1.1,0,12])

show ()

See Figure 5, which was produced by the following Matlab program:

hold off

subplot (211)

hold on

for y = 0.1:0.1:1
x = [0,0,y,y,1]
Px_given.y = [0,1.0/y,1.0/y,0,0]
plot (x,Px_given_y ,’b’)

end

xlabel ("x-1")

ylabel (’ p( 1 | O<y<1)7)
axis ([—0.1,1.1,0,12])

subplot (212)

hold on

for y = 1.0:0.1:1.9
x = [0,y—1,y—1,1,1]
Px_given.y = [0,0,1.0/(2-y),1.0/(2—y) ,0]
plot (x,Px_given_y ,’r’)

16



end

xlabel ("x_17)
ylabel (’ p( 1 | 1<y <2)?)
axis ([-0.1,1.1,0,12])

c. Repeating the above using normal distributions, we get

py(y) = (Pay * D))

= /OO Doy (T) Py (y — ) d

— 00

/OO ( 1 z2> ( 1 —(y—w)2> d
frd —e 2 —e 2 X
—oo \ V271 V2T

> 1 — (222 —2xy+y?)
= —e 2 d:l:
oo 2T

o q —(zZ—xy+%—%+§>
= /_DO 7€ 23 dz
© 1 -(e-4r-5+%)
— / 2 2 4 2 d:L‘
oo 27
1 y? & 1 Y2
— -4 @4
= e 1 e 2) dx
vam —o0 ﬁ
1 2
= e 4
2%
— N(0,2)

Similarly,

Py (Y — 1) Pay (1)
Py(y)

1 —(y—=1)? 1 72%
—F=€ 2 —F=€ 2
V2T V2

,y2
()

. .2
1 y 7411y+411

7 4
f

p$1|y(xl |y) =

e (x1—%)?

- (5}

See Figure 6, which was produced by the following Python program:

17



from matplotlib.numerix import =
from numarray import s
from pylab import plot, subplot, legend, axis

import LinearAlgebra as la

subplot (211)
y = arange(—5,5,0.01)
p = (1.0/sqrt (4xpi))*(exx(—(y**x2)/4))

plot (y,p)

xlabel (r’8y$ )
ylabel(r’$p(y)$’)
axis ([-5,5,-0.2,1.0])

subplot (212)

y = 1.6

X arange (—5,5,0.01)

p (1.0/sqrt (pi))*(e*xx(—((x—y/2)*x2)))
plot (x,p)

xlabel (r’$x_1%")

ylabel (r’$p(x-1 \ given \ y=1.6)$")
axis ([~5,5,-0.2,1.0])

show ()

See Figure 6, which was produced by the following Matlab program:

subplot (211);

y = —5:0.01:5;

p = (1.0/sqrt (4xpi))=(exp(—(y."2)/4));
plot (y,p);

xlabel ('y’);

ylabel (” p(Y)’);

axis ([-5,5,-0.2,1.0]);

subplot (212);
y = 1.6;

x = —5:0.01:5;
p = (1.0/sqrt (pi))s(exp(—((x—y/2)."2)));
plot (x,p);
xlabel ("x-1"7);
ylabel ('p(x-1 1
axis ([-5,5,-0.2,1.0]

. The point of this problem is to show that probability density functions are
in general not closed under linear combinations of i.i.d. random variables.
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That is, given two i.i.d. random variables x; and xo with distribution
of type A, the random variable y = x; + x2 does not in general have
a distribution of type A. Gaussian (a.k.a normal) distributions are an
exception. In fact, Gaussians are the only non-trivial family of functions
that are both closed and linear under convolution (and therefore under
addition of i.i.d. random variables):

N(p1,07) % N(p2,035) = N(p1 + pa, 07 + 03)

Problem 7: Monty Hall

To get credit for this problem, you must not only write your own correct solution,
but also write a computer simulation (in either Matlab or Python) of the process
of playing this game:

Suppose I hide the ring of power in one of three identical boxes while you
weren’t looking. The other two boxes remain empty. After hiding the ring of
power, I ask you to guess which box it’s in. I know which box it’s in and, after
you’ve made your guess, I deliberately open the lid of an empty box, which is
one of the two boxes you did not choose. Thus, the ring of power is either in the
box you chose or the remaining closed box you did not choose. Once you have
made your initial choice and I've revealed to you an empty box, I then give you
the opportunity to change your mind — you can either stick with your original
choice, or choose the unopened box. You get to keep the contents of whichever
box you finally decide upon.

e What choice should you make in order to maximize your chances of re-
ceiving the ring of power? Explain your answer.

e Write a simulation. There are two choices in this game for the contestant
in this game: (1) choice of box, (2) choice of whether or not to switch. In
your simulation, first let the host choose a random box to place the ring
of power. Show a trace of your program’s output for a single game play,
as well as a cumulative probability of winning for 1000 rounds of the two
policies (1) to choose a random box and then switch and (2) to choose a
random box and not switch.

Solution:

e Always switch your answer to the box you didn’t choose the first time.
This reason is as follows. You have a 1/3 chance of initially picking the
correct box. That is, there is a 2/3 chance the correct answer is one of
the other two boxes. Learning which of the two other boxes is empty does
not change these probabilities; your initial choice still has a 1/3 chance
of being correct. That is, there is a 2/3 chance the remaining box is the
correct answer. Therefore you should change your choice.
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Another way to understand the problem is to extend it to 100 boxes, only
one of which has the ring of power. After you make your initial choice,
I then open 98 of the 99 remaining boxes and show you that they are
empty. Clearly, with very high probability the ring of power resides in the
one remaining box you did not initially choose.

Here is a sample simulation output for the Monty Hall problem:

actual:
guessl :
reveal:
swap

guess2:

N O W -

actual:
guessl :
reveal:
swap

guess?2:

WO = Www

actual:
guessl :
reveal:
swap

guess?2:

WO = W

swap : 0

win ;292
lose 1 708
win /(win+lose): 0.292

actual:
guessl :
reveal:
swap

guess?2:

W = N =W

actual:
guessl :
reveal:
swap

guess2 :

W = N = =

actual:
guessl :
reveal: 1

N W
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swap 1

guess2: 3

swap 1
win : 686
lose : 314

win /(win+lose ): 0.686

Here is a Python program that generates the Monty Hall simulation output
above:

from matplotlib.numerix import =

from numarray import

from pylab import plot, subplot, legend, axis, xlabel, ylabel, text, show, r
Error.setMode( all=None, overflow=’warn’, underflow="ignore’, dividebyzero="w
from LinearAlgebra import x*

for swap in range(2)
win = 0
lose = 0
for i in range(1000)
actual = int (rand()*3)+1;
guessl = int (rand()*3)+1;

if guessl = actual
reveal = int (rand ()*2)+1;
if reveal = actual
reveal = reveal + 1;
else:
if guessl = 1 and actual = 2
reveal = 3;
elif guessl = 1 and actual = 3
reveal = 2;
elif guessl = 2 and actual = 1
reveal = 3;
elif guessl = 2 and actual = 3
reveal = 1;
elif guessl = 3 and actual =1
reveal = 2;
elif guessl = 3 and actual = 2
reveal = 1;
if swap = 1 :
if guessl = 1 and reveal = 2
guess2 = 3;
elif guessl = 1 and reveal = 3
guess2 = 2;
elif guessl = 2 and reveal = 1

21



guess2 = 3;

elif guessl = 2 and reveal = 3
guess2 = 1;
elif guessl = 3 and reveal =1
guess2 = 2;
elif guessl = 3 and reveal = 2
guess2 = 1;
else:
guess2 = guessl;
if guess2 = actual
win = win + 1;
else:
lose lose + 1;

# only print trace for first 3 games

if i

# print

< 3

print ’actual: ’
print ’guessl: ’
print ’reveal: ’
print ’swap ’
print ’guess2: ’
results for each

print ’swap
print ’win

print ’lose :
print ’'win/(wint+lose ):

)

)

)

)

)

)

)

actual
guessl
reveal
swap

guess?2

game play policy

swap

win

lose

float (win) / float (win + lose)

Here is a Matlab program that simulates the Monty Hall simulation output

above:

for i = 1:1000
actual = floor (rand ()*3)+1;

guessl = floor (rand ()*3)+1;
if guessl = actual
reveal = floor (rand()*2)+1;
if reveal = actual
reveal = reveal + 1;
end
else
if guessl = 1 && actual = 2
reveal = 3;
elseif guessl = 1 && actual =— 3
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reveal = 2;

elseif guessl = 2 && actual = 1
reveal = 3;
elseif guessl = 2 && actual =— 3
reveal = 1;
elseif guessl = 3 && actual =1
reveal = 2;
elseif guessl =— 3 && actual =— 2
reveal = 1;
end
end
if swap = 1
if guessl = 1 && reveal = 2
guess2 = 3;
elseif guessl = 1 && reveal =— 3
guess2 = 2;
elseif guessl = 2 && reveal = 1
guess2 = 3;
elseif guessl = 2 && reveal =— 3
guess2 = 1;
elseif guessl = 3 && reveal = 1
guess2 = 2;
elseif guessl = 3 && reveal = 2
guess2 = 1;
end
else
guess2 = guessl;
end
if guess2 = actual
win = win + 1;
else
lose = lose + 1;
end
%% only print trace for first 3 games
if i <=3
actual
guessl
reveal
swap
guess?2
end

end
%% print results for each game play policy
swap
win / (win + lose)
end
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Figure 4: The probability density function of the sum of two independent uni-
form random variables.
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