
Problem Set 1

MAS 622J/1.126J: Pattern Recognition and Analysis

Due: 5:00 p.m. on September 20

[Note: All instructions to plot data or write a program should be carried out
using Matlab. In order to maintain a reasonable level of consistency and sim-
plicity we ask that you do not use other software tools.]

If you collaborated with other members of the class, please write their names at
the end of the assignment. Moreover, you will need to write and sign the follow-
ing statement: “In preparing my solutions, I did not look at any old homeworks,
copy anybody’s answers or let them copy mine.”

Problem 1: Why? [5 points]

Limit your answer to this problem to a page.

a. Describe an application of pattern recognition related to your research.
What are the features? What is the decision to be made? Speculate on
how one might solve the problem.

b. In the same way, describe an application of pattern recognition you would
be interested in pursuing for fun in your life outside of work.

Solution: Refer to examples discussed in lecture.

Problem 2: Probability Warm-Up [20 points]

Let x and y be discrete random variables, and a and b are constant values.
Let µx denote the expected value of x and σ2

x denote the variance of x. Use
excruciating detail to answer the following:

a. Show E[ax+ by] = aE[x] + bE[y].

b. Show σ2
x = E[x2]− µ2

x.

c. Show that independent implies uncorrelated.

d. Show that uncorrelated does not imply independent.
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e. Let z = ax + by. Show that if x and y are uncorrelated, then σ2
z =

a2σ2
x + b2σ2

y.

f. Let xi (i = 1, ..., n) be random variables independently drawn from the
same probability distribution with mean µx and variance σ2

x. For the

sample mean x = 1
n

n∑
i=1

xi, show the following: (i) E[x] = µx. (ii) Var[x]

(variance of the sample mean) = σ2
x/n. Note that this is different from

the sample variance s2n = 1
n

n∑
i=1

(xi − x)2.

g. Let x1 and x2 be independent and identically distributed (i.i.d) continuous
random variables. Can Pr[x1 ≤ x2] be calculated? If so, find its value. If
not, explain. Hint 1: Remember that for a continuous variable Pr[x1 = k] =
0, for any value of k. Hint 2: Remember the definition of i.i.d. variables.

h. Let x1 and x2 be independent and identically distributed discrete random vari-
ables. Can Pr[x1 ≤ x2] be calculated? If so, find its value. If not, explain.

Solution:

a. The following is for continuous random variables. A similar argument
holds for continuous random variables.

E[ax+ by] =
∑

x∈X,y∈Y
(ax+ by) p(x, y)

= a
∑

x∈X,y∈Y
x p(x, y) + b

∑
x∈X,y∈Y

y p(x, y)

= a
∑
x∈X

x p(x) + b
∑
y∈Y

y p(y)

= aE[x] + bE[y]

b. Making use of the definition of variance and the previous part, we have:

σ2
x = E[(x− µx)2]

= E[x2 − 2µxx+ µ2
x]

= E[x2]− E[2µxx] + E[µ2
x]

= E[x2]− 2µxE[x] + µ2
x

= E[x2]− 2µxµx + µ2
x

= E[x2]− 2µ2
x + µ2

x

= E[x2]− µ2
x

c. In order to check if two discrete random variables x and y are uncorrelated,
we have to prove σxy = 0 (the same holds for continuous random variables.)

From the previous question:

σ2
x,y = E[xy]− µxµy
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If two variables are independent:

E[xy] =
∑

x∈X,y∈Y
xy p(x, y)

=
∑

x∈X,y∈Y
xy p(x) p(y)

=
∑
x∈X

x p(x)
∑
y∈Y

y p(y)

= E[x] E[y]

Finally,

σ2
x,y = E[x] E[y]− µxµy = 0

d. To prove this, we need to find one case where 1) p(x, y) 6= p(x)p(y) and
2) σxy = 0 are satisfied. One possible solution is as follows:

Suppose we have the discrete random variables x and y, and we observed
all possibilities:

x y
1 1
1 1
-1 1
-1 1
0 0
0 0

If we look at the case where x = 1 and y = 1, 1) is satisfied:

p(x = 1, y = 1) =
2
6

=
1
3

p(x = 1)p(y = 1) =
2
6

4
6

=
2
9

Now it is easy to verify that 2) is also satisfied:

σ2
x,y = E[xy]− µxµy = 0− 0

4
6

= 0

e. Given that z = ax+ by and that x and y are uncorrelated, we have

σ2
z = E[(z − µz)2]

= E[z2]− µ2
z

= E[(ax+ by)2]− (aµx + bµy)2

= E[a2x2 + 2abxy + b2y2]− (a2µ2
x + 2abµxµy + b2µ2

y)
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= a2E[x2] + 2abE[xy] + b2E[y2]− a2µ2
x − 2abµxµy − b2µ2

y

= a2(E[x2]− µ2
x) + 2ab(E[xy]− µxµy) + b2(E[y2]− µ2

y)

= a2σ2
x + 2abσ2

xy + b2σ2
y

= a2σ2
x + b2σ2

y,

where only the last equality depends on x and y being uncorrelated.

f. Using the result of (a) and the fact that E[xi] = µx,

E[x̄] = E[
1
n

n∑
i=1

xi] =
1
n

n∑
i=1

E[xi] =
1
n
n µx = µx

Also, using the result of (d) and the fact Var[xi] = σ2
x

Var[x̄] = Var[
1
n

n∑
i=1

xi] =
1
n2

n∑
i=1

Var[xi] =
1
n2

n σ2
x = σ2

x/n

g. Given that x1 and x2 are continuous random variables, we know that
Pr[x1 = k] = 0 and Pr[x2 = k] = 0 for any value of k. Thus,

Pr[x1 ≤ x2] = Pr[x1 < x2].

Given that x1 and x2 are i.i.d., we know that replacing x1 with x2 and x2

with x1 will have no effect on the world. In particular, we know that

Pr[x1 < x2] = Pr[x2 < x1].

However, since probabilities or the space of possible values must sum to
one, we have

Pr[x1 < x2] + Pr[x2 < x1] = 1.

Thus,

Pr[x1 ≤ x2] =
1
2
.

h. For discrete random variables, unlike the continuous case above, we need
to know the distributions of x1 and x2 in order to find Pr[x1 = k] and
Pr[x2 = k]. Thus, the argument we used above fails. In general, it is
not possible to find Pr[x1 ≤ x2] without knowledge of the distributions of
both x1 and x2.

Problem 3: Teatime with Gauss and Bayes [20
points]

Let p(x, y) = 1
2παβ e

−
(

(y−µ)2

2α2 +
(x−y)2

2β2

)
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a. Find p(x), p(y), p(x|y), and p(y|x). In addition, give a brief description
of each of these distributions.

b. Let µ = 0, α = 15, and β = 3. Plot p(y) and p(y|x = 9) for a reasonable
range of y. What is the difference between these two distributions?

Solution:

a. To find p(y), simply factor p(x, y) and then integrate over x:

p(y) =
∫ ∞
−∞

p(x, y) dx

=
∫ ∞
−∞

1
2παβ

e
−
(

(y−µ)2

2α2 +
(x−y)2

2β2

)
dx

=
∫ ∞
−∞

1
2παβ

e−
(y−µ)2

2α2 e
− (x−y)2

2β2 dx

=
1√

2πα2
e−

(y−µ)2

2α2

∫ ∞
−∞

1√
2πβ2

e
− (x−y)2

2β2 dx

=
1√

2πα2
e−

(y−µ)2

2α2

= N (µ, α2)

The integral goes to 1 because it is of the form of a probability distribution
integrated over the entire domain. To find p(x|y), divide p(x, y) by p(y):

p(x|y) =
p(x, y)
p(y)

=
1√

2πβ2
e
− (x−y)2

2β2

= N (y, β2)

Finding p(x) and p(y|x) follows essentially the same procedure, but the
algebra is more involved and requires completing the square in the expo-
nent.

p(x) =
∫ ∞
−∞

p(x, y) dy

=
∫ ∞
−∞

1
2παβ

e
−
(

(y−µ)2

2α2 +
(x−y)2

2β2

)
dy

=
∫ ∞
−∞

1
2παβ

e
−
(
β2(y−µ)2+α2(x−y)2

2α2β2

)
dy

=
∫ ∞
−∞

1
2παβ

e
−
(
β2y2−2β2µy+β2µ2+α2x2−2α2xy+α2y2

2α2β2

)
dy
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=
∫ ∞
−∞

1
2παβ

e
−
(

(α2+β2)y2−2(α2x+β2µ)y+(β2µ2+α2x2)
2α2β2

)
dy

=
∫ ∞
−∞

1
2παβ

e

−

(
y2−2α

2x+β2µ
α2+β2 y+ β

2µ2+α2x2

α2+β2

2 α2β2

α2+β2

)
dy

=
∫ ∞
−∞

1
2παβ

e

−

 y2−2α
2x+β2µ
α2+β2 y+

(
α2x+β2µ
α2+β2

)2

−

(
α2x+β2µ
α2+β2

)2

+ β
2µ2+α2x2

α2+β2

2 α2β2

α2+β2


dy

=
∫ ∞
−∞

1
2παβ

e

−

(y−α2x+β2µ
α2+β2

)2

−

(
α2x+β2µ
α2+β2

)2

+ β
2µ2+α2x2

α2+β2

2 α2β2

α2+β2


dy

=
∫ ∞
−∞

1
2παβ

e

−

(y−α2x+β2µ
α2+β2

)2

2 α2β2

α2+β2


e

−

 β2µ2+α2x2

α2+β2 −

(
α2x+β2µ
α2+β2

)2

2 α2β2

α2+β2


dy

=
1

2παβ

√
2π

α2β2

α2 + β2
e

−

 β2µ2+α2x2

α2+β2 −

(
α2x+β2µ
α2+β2

)2

2 α2β2

α2+β2

 ∫ ∞
−∞

1√
2π α2β2

α2+β2

e

−

(y−α2x+β2µ
α2+β2

)2

2 α2β2

α2+β2


dy

(Note :
∫ ∞
−∞

1√
2π α2β2

α2+β2

e

−

(y−α2x+β2µ
α2+β2

)2

2 α2β2

α2+β2


dy =

∫ ∞
−∞

p(y|x) dy)

=
1√

2π(α2 + β2)
e

−

 β2µ2+α2x2

α2+β2 −

(
α2x+β2µ
α2+β2

)2

2 α2β2

α2+β2



=
1√

2π(α2 + β2)
e
−
(

(α2+β2)(β2µ2+α2x2)−(α2x+β2µ)2

2α2β2(α2+β2)

)

=
1√

2π(α2 + β2)
e
−
(
α2β2µ2+α4x2+β4µ2+α2β2x2−α4x2−2α2β2µx−β4µ2

2α2β2(α2+β2)

)

=
1√

2π(α2 + β2)
e
−
(
α2β2x2−2α2β2µx+α2β2µ2

2α2β2(α2+β2)

)

=
1√

2π(α2 + β2)
e
−
(

(x−µ)2

2(α2+β2)

)
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= N (µ, α2 + β2)

To find p(y|x) we simply divide p(x, y) by p(x). In finding p(x), we already
know the form of p(y|x) (see the longest line in the derivation of p(x)
above):

p(y|x) =
p(x, y)
p(x)

=
1√

2π α2β2

α2+β2

e

−

(y−α2x+β2µ
α2+β2

)2

2 α2β2

α2+β2



= N (
α2x+ β2µ

α2 + β2
,
α2β2

α2 + β2
)

Note that all the above distibutions are Gaussian.

b. The following Matlab code produced Figure 1:

c l o s e a l l ;
c l e a r a l l ;

%I n i t i a l i z e v a r i a b l e s
m = 0 . 0 ;
a = 1 5 . 0 ;
b = 3 ;
x = 9 ;

%Compute parameters
y = −100:1 :100 ;
mean = ( ( a ˆ2)∗x + (bˆ2)∗m)/( aˆ2 + b ˆ 2 ) ;
var = ( ( a∗b )ˆ2 )/ ( aˆ2 + b ˆ 2 ) ;
p y g iven x = ( 1 . 0 / s q r t (2∗ pi ∗var ) )∗ exp (−((y−mean ) . ˆ 2 ) / ( 2∗ var ) ) ;
var2 = a ˆ2 ;
p y = ( 1 . 0 / s q r t (2∗ pi ∗var2 ) )∗ exp (−((y−m) . ˆ 2 ) / ( 2∗ var2 ) ) ;

%Show in format ion
f i g u r e ;
p l o t (y , p y g iven x , ’ b ’ ) ;
hold on
p lo t (y , p y , ’ r ’ ) ;
l egend ( ’ p ( y | x ) ’ , ’ p ( y ) ’ ) ;
sy = s i z e ( y ) ;
a x i s ( [ y ( 1 ) , y ( sy ( 2 ) ) , 0 , 0 . 2 ] ) ;
x l a b e l ( ’ y ’ ) ;
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Figure 1: The marginal p.d.f. of y and the p.d.f. of y given x for a specific value
of x. Notice how knowing x makes your knowledge of y more certain.

t ex t (−70 ,0.14 , ’\mu=0 ’) ;
t ex t (−70 ,0.12 , ’\ alpha =15 ’) ;
t ex t (−70 ,0.1 , ’\ beta =3 ’) ;

Problem 4: Covariance Matrix [15 points]

Let Σ =
[

5 4
4 5

]
a. Find the eigenvalues and eigenvectors of Σ by hand (include all calcula-

tions.) Verify your computations with MATLAB function eig.

b. Verify that Σ is a valid covariance matrix.
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c. We provide 500 data points sampled from the distribution N ([0 0],Σ).
Download the dataset from the course website and project the data onto
the eigenvectors of the covariance matrix. What is the effect of this pro-
jection? Include MATLAB code and plots before and after the projection.

Solution:

a. We can find the eigenvectors and eigenvalues of Σ by starting with the
definition of an eigenvector. Namely, a vector e is an eigenvector of Σ if
it satisfies

Σe = λe

for some constant scalar λ, which is called the eigenvalue corresponding
to e. This can be rewritten as

(Σ− λI)e = 0

This is equivalent to
det(Σ− λI) = 0

Thus, we require that
(5− λ)2 − 42 = 0

By inspection, this is true when λ = 9 and λ = 1.

To find the eigenvectors, we plug the eigenvalues back into the equation
above to get

(Σ− 9I)e =
[

5− 9 4
4 5− 9

] [
a
b

]
=
[
−4 4

4 −4

] [
a
b

]
=
[

0
0

]
which gives a = b. Normalized, this results in the eigenvector

e1 =

[
1√
2

1√
2

]

Similarly, λ = 1 gives

(Σ− 1I)e =
[

5− 1 4
4 5− 1

] [
a
b

]
=
[

4 4
4 4

] [
a
b

]
=
[

0
0

]
which gives a = −b. Normalized, this results in the eigenvector

e1 =

[
−1√

2
1√
2

]

b. The matrix Σ is a valid covariance matrix if it is symmetric and positive
semi-definite. Clearly, it is symmetric, since ΣT = Σ. One way to prove it
is positive semi-definite is to show that all its eigenvalues are non-negative.
This is indeed the case, as shown in the previous question.
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c. Figure 2 shows how projecting the data onto the eigenvectors of the data’s
covariance matrix reduces the correlation between x and y. The MATLAB
code is as follows:

c l e a r a l l ;
c l o s e a l l ;

%I n i t i a l i z e covar iance matrix
S = [ 5 4 ; 4 5 ] ;

%Load data
load ( ’ po ints ’ ) ;
%Show c o r r e l a t i o n o f o r i g i n a l po in t s
c o r r c o e f (X)

%Compute e i g e n v e c t o r s and e i g e n v a l u e s
[V D] = e i g (S ) ;
D
V

%Pro j ec t data
pX = (V ∗ X’ ) ’ ;

%Show c o r r e l a t i o n o f p ro j e c t ed po in t s
c o r r c o e f (pX)

%Showing data
f i g u r e ;
subplot (121)
s c a t t e r (X( : , 1 ) ,X( : , 2 ) , ’ f i l l e d ’ ) ;
a x i s equal
x l a b e l ( ’ x ’ ) ;
y l a b e l ( ’ y ’ ) ;
t i t l e ( ’ Or i g i na l Data ’ ) ;

subplot ( 1 2 2 ) ;
s c a t t e r (pX( : , 1 ) ,pX( : , 2 ) , ’ f i l l e d ’ ) ;
a x i s equal
x l a b e l ( ’ x ’ ) ;
y l a b e l ( ’ y ’ ) ;
t i t l e ( ’ Pro jec ted Data ’ ) ;
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Figure 2: The original data and the data transformed into the coordinate system
defined by the eigenvectors of their covariance matrix.

Problem 5: Probabilistic Modeling [20 points]

Let x ∈ {0, 1} denote a person’s affective state (x = 0 for “positive-feeling
state”, and x = 1 for “negative-feeling state”). The person feels positive with
probability θ1. Suppose that an affect-tagging system (or a robot) recognizes
her feeling state and reports the observed state, y, to you. But this system is
unreliable and obtains the correct result with probability θ2.

a. Represent the joint probability distribution P (x, y|θ) for all x, y (a 2x2
matrix) as a function of the parameters θ = (θ1, θ2).

b. The Maximum Likelihood estimation criterion for the parameter θ is de-
fined as:

θ̂ML = arg max
θ
L(t1, ..., tn; θ) = arg max

θ

n∏
i=1

p(ti|θ)

where we have assumed that each data point ti is drawn independently
from the same distribution so that the likelihood of the data is L(t1, ..., tn; θ) =
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n∏
i=1

p(ti|θ). Likelihood is viewed as a function of the parameters, which de-

pends on the data. Since the above expression can be technically challeng-
ing, we maximize the log-likelihood logL(t1, ..., tn; θ) instead of likelihood.
Note that any monotonically increasing function (i.e., log function) of the
likelihood has the same maxima. Thus,

θ̂ML = arg max
θ

logL(t1, ..., tn; θ) = arg max
θ

n∑
i=1

log p(ti|θ)

Suppose we get the following joint observations t = (x, y).

x y
1 0
1 1
0 0
1 1
0 0
0 1
0 0
1 1

What are the maximum-likelihood (ML) values of θ1 and θ2? (Hint. Since
P (x, y|θ) = P (y|x, θ2)P (x|θ1), the estimation of the two parameters can
be done separately in the log-likelihood criterion.)

Solution:

a. The probability mass function (pmf) of x ∈ {0, 1} is

P (x) =
{
θ1, x = 0
1− θ1, x = 1

}
The conditional pmf of y ∈ {0, 1} given that x = 0 is

P (y|x = 0) =
{
θ2, y = 0
1− θ2, y = 1

}
The conditional pmf of y given that x = 1 is

P (y|x = 1) =
{

1− θ2, y = 0
θ2, y = 1

}
Use P (x, y) = P (y|x)P (x) to tabulate the joint pmf of (x, y).

P (x, y) =
(
P (0, 0) P (0, 1)
P (1, 0) P (1, 1)

)
=
(

θ2θ1 (1− θ2)θ1
(1− θ2)(1− θ1) θ2(1− θ1)

)
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b. We select (θ1, θ2) to maximize the log-likelihood of the samples {(xi, yi), i =
1, ..., n} which may be expressed as

J(θ1, θ2) =
∑
i

logP (xi, yi)

=
∑
i

(logP (yi|xi) + logP (xi))

=

(∑
i

logP (yi|xi)

)
+

(∑
i

logP (xi)

)
= J2(θ2) + J1(θ1)

Hence, we choose θ1 to maximize

J1(θ1) =
∑
i

logP (xi)

= N(x = 1) log(1− θ1) + (n−N(x = 1)) log θ1

where N(x = 1) =
∑
i xi. Differentiating w.r.t. θ1 gives

∂J1

∂θ1
=
−N(x = 1)

1− θ1
+
n−N(x = 1)

θ1

We set this derivative to zero and solve for θ1 to obtain

θ̂1 = 1− N(x = 1)
n

Similarly, we choose θ2 to maximize

J2(θ2) =
∑
i

logP (yi|xi)

= N(x = y) log θ2 + (n−N(x = y)) log(1− θ2)

where N(x = y) =
∑
i (xiyi + (1− xi)(1− yi)). Differentiating J2 w.r.t.

θ2, setting to zero and solving for θ2 gives

θ̂2 =
N(x = y)

n

For the example data, θ̂1 = 4
8 , θ̂2 = 6

8 . Thus,

P̂ (x, y) =

(
θ̂2θ̂1 (1− θ̂2)θ̂1

(1− θ̂2)(1− θ̂1) θ̂2(1− θ̂1)

)

The maximum likelihood of the data under this model is∏
i

P̂ (xi, yi) =
(

6
8

)6(4
8

)8(2
8

)2

≈ 4.34× 10−5

13



Problem 6: Ring Problem [20 points]

To get credit for this problem, you must not only write your own correct solution,
but also write a computer simulation of the process of playing this game:

Suppose I hide the ring of power in one of three identical boxes while you
weren’t looking. The other two boxes remain empty. After hiding he ring of
power, I ask you to guess which box it’s in. I know which box it’s in and, after
you’ve made your guess, I deliberately open the lid of an empty box, which is
one of the two boxes you did not choose. Thus, the ring of power is either in the
box you chose or the remaining closed box you did not choose. Once you have
made your initial choice and I’ve revealed to you an empty box, I then give you
the opportunity to change your mind – you can either stick with your original
choice, or choose the unopened box. You get to keep the contents of whichever
box you finally decide upon.

• What choice should you make in order to maximize your chances of re-
ceiving the ring of power? Justify your answer using Bayes’ rule.

• Write a simulation. There are two choices in this game for the contestant
in this game: (1) choice of box, (2) choice of whether or not to switch. In
your simulation, first let the host choose a random box to place the ring
of power. Show a trace of your program’s output for a single game play,
as well as a cumulative probability of winning for 1000 rounds of the two
policies (1) to choose a random box and then switch and (2) to choose a
random box and not switch.

Solution:

• Always switch your answer to the box you didn’t choose the first time.
This reason is as follows. You have a 1/3 chance of initially picking the
correct box. That is, there is a 2/3 chance the correct answer is one of
the other two boxes. Learning which of the two other boxes is empty does
not change these probabilities; your initial choice still has a 1/3 chance
of being correct. That is, there is a 2/3 chance the remaining box is the
correct answer. Therefore you should change your choice.

Using Bayes:

R = Box with the Ring.
O = Box Opened.
S = Box Selected.

P (R|O,S) =
P (O|R,S)P (R|S)

P (O|S)
(1)

Where:

P (O|S) = Σ3
R=1P (O,R|S) = Σ3

R=1P (O|R,S)P (R|S) (2)
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P (R|O,S) =
1 ∗ 1

3
1
2 ∗

1
3 + 1 ∗ 1

3 + 0 ∗ 1
3

=
2
3

(3)

Another way to understand the problem is to extend it to 100 boxes, only
one of which has the ring of power. After you make your initial choice,
I then open 98 of the 99 remaining boxes and show you that they are
empty. Clearly, with very high probability the ring of power resides in the
one remaining box you did not initially choose.

• Here is a sample simulation output for the Ring problem:

ac tua l : 1
guess1 : 2
r e v e a l : 3
swap : 0
guess2 : 2

ac tua l : 3
guess1 : 3
r e v e a l : 1
swap : 0
guess2 : 3

ac tua l : 2
guess1 : 3
r e v e a l : 1
swap : 0
guess2 : 3

swap : 0
win : 292
l o s e : 708
win /( win+l o s e ) : 0 .292

ac tua l : 3
guess1 : 1
r e v e a l : 2
swap : 1
guess2 : 3

ac tua l : 1
guess1 : 1
r e v e a l : 2
swap : 1
guess2 : 3
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ac tua l : 3
guess1 : 2
r e v e a l : 1
swap : 1
guess2 : 3

swap : 1
win : 686
l o s e : 314
win /( win+l o s e ) : 0 .686

Here is a Matlab program that simulates the Ring simulation output
above:

f o r swap = 0 :1
win = 0 ;
l o s e = 0 ;
f o r i = 1:1000

ac tua l = f l o o r ( rand ()∗3)+1;
guess1 = f l o o r ( rand ()∗3)+1;
i f guess1 == actua l

r e v e a l = f l o o r ( rand ()∗2)+1;
i f r e v e a l == actua l

r e v e a l = r e v e a l + 1 ;
end

e l s e
i f guess1 == 1 && actua l == 2

r e v e a l = 3 ;
e l s e i f guess1 == 1 && actua l == 3

r e v e a l = 2 ;
e l s e i f guess1 == 2 && actua l == 1

r e v e a l = 3 ;
e l s e i f guess1 == 2 && actua l == 3

r e v e a l = 1 ;
e l s e i f guess1 == 3 && actua l == 1

r e v e a l = 2 ;
e l s e i f guess1 == 3 && actua l == 2

r e v e a l = 1 ;
end

end
i f swap == 1

i f guess1 == 1 && r e v e a l == 2
guess2 = 3 ;

e l s e i f guess1 == 1 && r e v e a l == 3
guess2 = 2 ;

e l s e i f guess1 == 2 && r e v e a l == 1
guess2 = 3 ;
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e l s e i f guess1 == 2 && r e v e a l == 3
guess2 = 1 ;

e l s e i f guess1 == 3 && r e v e a l == 1
guess2 = 2 ;

e l s e i f guess1 == 3 && r e v e a l == 2
guess2 = 1 ;

end
e l s e

guess2 = guess1 ;
end
i f guess2 == actua l

win = win + 1 ;
e l s e

l o s e = l o s e + 1 ;
end
%% only p r in t t r a c e f o r f i r s t 3 games
i f i <= 3

actua l
guess1
r e v e a l
swap
guess2

end
end
%% p r i n t r e s u l t s f o r each game play p o l i c y
swap
win / ( win + l o s e )

end
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