Problem Set 1 Solutions

MAS.622J/1.126J: Pattern Recognition and Analysis
Originally Due Monday, 15 September 2008

Problem 1: Why?

a.

b.

Describe an application of pattern recognition related to your research.
What are the features? What is the decision to be made? Speculate on
how one might solve the problem. Limit your answer to a page.

In the same way, describe an application of pattern recognition you would
be interested in pursuing for fun in your life outside of work.

Solution: Refer to examples discussed in lecture.

Problem 2: Probability Warm-Up

Let X and Y be random variables. Let px = E[X] denote the expected value
of X and 0% = E[(X — ux)?] = E[X?] — % denote the variance of X. a and b
are constant values. Use excruciating detail to answer the following:

a.
b.

C.

Show E[aX + bY| = aE[X] + bE[Y].
Show that independent implies uncorrelated.
Show that uncorrelated does not imply independent.

Let Z = aX + bY. Show that if X and Y are uncorrelated, then 0% =
a’o% +b%ol.

Let X; (i = 1,...,n) be random variables independently drawn from the
same probability distribution with mean px and variance o%. For the
— n p—
sample mean X = 1 3 X; show the following: (i) E[X] = pux. (ii)

i=1
Var[X] (variance of the sample mean) = 0% /n. Note that this is different

n J—
from the sample variance s2 = 1 3 (X, — X)2.
i=1
The conditional expected value E(X|Y) is a random variable in its own

right, whose value depends on the value of Y. Notice that the condi-
tional expected value of X given the event Y = y is a function of y.



If we write E(X|Y = y) = g¢(y) then the random variable E[X|Y =
y] = Y xP(z]Y =y) is just g(Y). Show E[X] = E[E[X|Y]] and E[Y]

E[E[Y|X]].

g. For a real value function f and discrete random variables X and Y,
E[f(X,Y)] =22 f(z,y)P(z,y). Show E[f(X,Y)] = E[E[f(X,Y)[Y]].
z oy

h. Let X; and X5 be independent and identically distributed continuous
random variables. Can Pr[X; < X5] be calculated? If so, find its value.
If not, explain.

i. Let X7 and X5 be independent and identically distributed discrete random
variables. Can Pr[X; < Xs] be calculated? If so, find its value. If not,
explain.

Solution:

a. The following is for continuous random variables. A similar argument
holds for discrete random variables.

ElaX +b0Y] = //(ax + by) p(z,y) dzdy

= a//:cp(:c,y)dxdy+b//yp(x,y)dxdy

— a/mp(:c)dx-l—b/yp(y)dy
— aB[X] + bE[Y]

b. Let X and Y be independent continuous random variables (a similar ar-
gument holds for discrete random variables). Then,

//wyp(x,y) dx dy

- / / 2y p(e) p(y) d dy

/xp(év) dx /yp(y) dy

E[X]E[Y]

E[XY]

c. Let X and Y be discrete random variables such that X takes on values
from {0,1} and Y takes on values from {—1,0,1}. Let the probability
mass function of X be

pzlr=0 = 0.5
pelr=1 = 0.5



and the probability mass function of Y conditioned on X be

Pylzly = —1lz =0] = 0.5
Pylely=0[z=0 = 0
py|x[y =1la=0 = 05

Pylly=-1zr=1 = 0
pyely=0z=1 = 1
pyly=1z=1 = 0.

Given the above, and the fact that p, [z, y] = pyj[y|2] p2[z], We get

Prylr =0,y = —1] 0.25
Prylt=0,y=0 = 0
peylt=0,y=1] = 025

Payle =1,y = —1] 0
prylt=1y=0 = 05
peylt=1ly=1 = 0.

palr =0]pyly=—1] = 0.125
Pelr = 0)pyly=0] = 025
pslz =0lpyly=1 = 0.125
palr =1]pyly=—-1] = 0.125
pelr=1pyly=0] = 025
pole=1lply=1 = 0125

Thus, we see that p, [z, y] # pz[z] py[y] and X and Y are not independent.
independent. However, since XY is identically zero, we also get

cov(X,Y) =0%y = E[X —px)(Y — py)]
= E[XY] - pxpy
= E[0] - (0:5)(0)
= 0-0
= 0.

Therefore, X and Y are uncorrelated but not independent.

d. Given that Z = aX + bY and that X and Y are uncorrelated, we have

oy = EBlZ-uz)’



EB[Z%] -

E[(aX + bY) ] — (apx + buy)?

Ela?X? 4 2abXY + b?Y?] — (a*pu% + 2abpx iy + b*ud)
a’E[X?] + 2abE[XY] + b*E[Y?] — o’ — 2abux py — b* i
Q2(B[X?) — 1) + 2b(E[XY] — pxcpy) + P(E[Y?] — i)
a’0% + 2abo%y + b2o?

a’o% + by,

where only the last equality depends on X and Y being uncorrelated.

e. Using the result of (a) and the fact E[X;] = px,

i=1 i=1

Also, using the result of (d) and the fact Var[X;] = 0%

_ 1 — )
Var[X]:Var[ﬁZ1 l-fHZZVar TLO'X—(TX/TL

f. The following is for discrete random variables. A similar argument holds
for continuous random variables. E[X|Y] = E[X|Y = y] is a function of

y, Le, BEX[Y =y =3 aP|Y =y) = g(y)

E[E[X]Y]]

Elg(y)]

= > 9P

= i;wP(fEIY=y)P(y)
= Zy:g:ﬂ)(w,y)

- éme,y)

= %:xpix)

= BX]

In like manner, we can prove E[E[X|Y]] = E[Y]

g. The following is for discrete random variables. A similar argument holds
for continuous random variables. E[f(X,Y)|Y] = E[f(X, Y)Y =y] is a



h.

function of y, i.e., E[f(X,Y)|Y =4] = f(z,y)P(z|Y =y) = g(y)

x

EE[f(X,Y)[Y]] = E[g(y)]
= > 9Py

= > [y Py =y)P(y)
DO f@y)P(x,y)

= E[f(X,Y)]

Given that X; and X5 are continuous random variables, we know that
Pr[X; = 2] = 0 and Pr[Xs = z] = 0 for any value of z. Thus,

PI[Xl < XQ] = PI‘[Xl < XQ}

Given that X; and X5 are i.i.d., we know that replacing X; with X5 and
Xo with X7 will have no effect on the world. In particular, we know that

Pr[X; < X5] = Pr[Xs < X;4].
However, since probabilities must sum to one, we have
Pr[X; < Xo] +Pr[Xe < X4] = 1.
Thus,

1
PI‘[Xl S XQ] = 5

For discrete random variables, unlike the continuous case above, we need
to know the distributions of X; and X in order to find Pr[X; = z] and
Pr[X5 = z]. Thus, the argument we used above fails. In general, it is not
possible to find Pr[X; < X5] without knowledge of the distributions of
both X; and Xs.

Problem 3: Teatime with Gauss and Bayes

o w=w? | (@—w)?
1 ( 202 + 232 )

Let p(z,y) = TraB €

a.

Find p(z), p(y), p(zly), and p(y|z). In addition, give a brief description
of each of these distributions.

Let p =0, a = 20, and 8 = 2.5. Plot p(y) and p(y|x = 10.5) for a reason-
able range of y. What is the difference between these two distributions?



Solution:

a. To find p(y), simply factor p(z,y) and then integrate over x:

py) = / Dz, y) do
— /oo ! ei((y";“;) +(w2;%))dx
oo 2maf

= N(:U” Oé2>

The integral goes to 1 because it is of the form of a probability distribution
integrated over the entire domain. To find p(z|y), divide p(x,y) by p(y):

_ p,y)

= Ny, 0%

Finding p(z) and p(y|z) follows essentially the same procedure, but the
algebra is more involved and requires completing the square in the expo-

nent.
o0
p(z) = / p(z,y) dy
— 00
2 ()2
o] 1 7((2(;;) +( 2/3%) )
= e dy
oo 2maf3
o q _( B2y=mw?+a(@—y)?
o 20232 d
oo 2maf3
o0 1 _ B2y2—282uy+82u?+a?2?2 —2a2zy+a?y?
o 20232 d
) 27ro¢ﬂe Y
© 1 _((02+ﬁ2)yz—2(a2m+§25)y+(ﬁzu2+a2m2))
— 2a<3
- /_Oo 2770466 dy
020432 2,2.1,2,2
] ( st S
oo 1 2 o232
. a2+32
- /_oozmﬂe v



2
272a21+ﬁ2u +(azz+ﬁ2u 7(a2r+ﬂ2u) 62u2+a212

o242 a2+p2 o242 o242
- 232
B
9] 1 2:2+52
= e dy
oo 2maf3
2 2 2 2 2 2 2,2 2.2
y— & z+B7p _ [ efz+B%p +ﬁu ta“x
a?+p2 o242 o242
- 232
o 1 202+[f2
= e dy
oo 2maf3
2 2 2 2,2 2.2 2 2 2
_aZe4p82u B2u2+a?a? [ a2atp?p
YT a7 aZ+ 52 aZ+52
- o232 - «232
o 1 2aT1p7 237552
= e e dy
_oo2maf
2 2
B2u2+a222 [ a2a+82u a2a482pu
aZ+52 aZ+52 SR
- 2/32 0o - 2B2
1 ) a2 32 Z152 1 o242 d
= s e —¢ Y
2maf3 a? + (32 o028
T

2
824210222 [ a22182u
a?4+32 a?+p2

252
_ 1 a?+p2
V@@ )
(22482 (8% +o?e?) —(a?a 482 u)?
= - o 20252 (a?+62)
27 (a2 + 5?)
252,21 0422104,210238222 040224282 40— p4u2
= - ¢ 2a232(a2+82)
(oz2 +5%)
2822224282 us+a282,u2
= - o 2a282(a?432)
2 (oz2 +5%)
(—w)?
- - ¢ 2(a?+67)
27r(a2 + (%)
2 2
= N(N,OL + 8 )

To find p(y|z) we simply divide p(z,y) by p(z). In finding p(z), we already
know the form of p(y|x) (see the longest line in the derivation of p(x)
above):



1 252142
B —
2ﬁ2
+62
a x+62/i 04252
= N( 2 2 0 2 2
a2+ 032 Tat+

271'2

Note that all the above distibutions are Gaussian.

b. The following Matlab code produced Figure 1:

m= 0.0
a = 20.0
b = 2.5
x = 10.5
y = —100:1:100

mean = ((a"2)xx + (b"2)*xm)/(a"2 + b"2)

var = ((axb)"2)/(a"2 + b"2)

p-y-given_x = (1.0/sqrt(2«pi*var))xexp(—((y—mean). 2)/(2xvar))
var2 = a’”2;

p-y = (1.0/sqrt(2«pixvar2))xexp(—((y—m)."2)/(2*var2))

hold off

plot (y,p_y_given_x,'b’)
hold on

plot (y,p-y,’'r’)
legend ("p(y[x)", 'p(y)’)

sy = sme(y)

axis ([y(1),v(sy (2)),0,0.2])
xlabel ('y’)

text(770 0.14, ’\mu=0")
text (—70,0.12, ’"\alpha=20")
text (—70,0.1, ’\beta=2.5")

Problem 4: Covariance Matrix

37 —15
Let Ax = { ~15 37 ]
a. Verify that Ax is a valid covariance matrix.
b. Find the eigenvalues and eigenvectors of Ax by hand. Show all your work.

c. Write a program to find and verify the eigenvalues and eigenvectors of Ax.



—p(ylx)
—ply)
0.15} n ]
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a=20
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Figure 1: The marginal p.d.f. of y and the p.d.f. of y given z for a specific value
of x. Notice how knowing x makes your knowledge of y more certain.

d. We provide 200 data points sampled from the distribution N (0, Ax).
Download the dataset from the course website and plot the data points.
Project the data onto the covariance matrix eigenvectors and plot the
transformed data. What is the difference between the two plots?

Solution:

a. The matrix Ax is a valid covariance matrix if it is symmetric and positive
semi-definite. Clearly, it is symmetric, since A% = Ay. One way to
prove it is positive semi-definite is to show that all its eigenvalues are
non-negative. This is indeed the case, as shown in the next part of the
problem.

b. We can find the eigenvectors and eigenvalues of Ay by starting with the
definition of an eigenvector. Namely, an vector e is an eigenvector of Ax
if it satisfies

Axe = Xe

for some constant scalar A, which is called the eigenvalue corresponding
to e. This can be rewritten as

(AX — /\I)e =0.



This is equivalent to

det(AX — )\I) =0.

Thus, we require that

(37 -XN*-152=0

By inspection, this is true when A = 52 and A = 22, both of which are
non-negative, thus confirming that Ax is indeed a positive semi-definite

matrix.

To find the eigenvectors, we plug the eigenvalues back into the equation

above to get

—-15 37-052 b

—-15 -15

(Ay—52l)e = | 3752 15 Ha]_{—m —15“

which gives @ = —b. Normalized, this results in the eigenvector

S-Sl

elzl

37-22  —15 a ]
~15  37-22 || b

Similarly, A = 39 gives
(Ax—ZQI)e =

which gives a = b. Normalized, this result

Sh-sl-

] |

-[ 5 )]

s in the eigenvector

a
b

a

b

=15

|-

0
0

. The following Matlab program prints out the eigenvectors and eigenvalues

Ofoi
[37 —15; —15 37]

A =

[V.D] = eig(A)

. The following Matlab program generated
tt = load (’psl.txt’)

% original correlation

Figure 2:

ttcorr = corrcoef(tt(1,:), tt(2,:))

figure
plot (tt (
xlabel (’

1,:),t8(2,:),7.7)
x’)
y')

10
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% eigenvector

% A = [37 —15; —15 37]

% [V,D] = eig(A)

V =[ 0.7071 0.7071
—0.7071 0.7071]

zz = Vxtt; % axis transformation

% correlation after transformation
zzcorr = corrcoef(zz(1l,:), zz(2,:))
figure

plot (zz(1,:),zz(2,:),7.7)

xlabel ("first eigenvector ’)

ylabel (’second eigenvector ’)

The second plot in Figure 2 shows the data rotated to align with the
eigenvectors of the data’s covariance matrix.

Problem 5: Distribution Linearity
Let X; and X5 be i.i.d. according to

lfor0<uz; <1

0, otherwise fori=1,2

px;) = {
Let Y = X1 + XQ.
a. Find an expression for p(y). Plot p(y) for some reasonable range of y.

b. Find an expression for p(z1|y). Plot p(z1|y) as a function of x; with y
treated as a known parameter for some reasonable value of y and some
reasonable range of x;.

c. Repeat the parts above, this time letting X; and X5 be i.i.d. according
to N(0,1).

d. What was the point of this problem? Hint: check out the title.
Solution:

a. From basic probability theory, we know that the probability density func-
tion of the sum of two independent random variables is the convolution of
the two probability density functions. So,

py(y) = (Puy *Pxy)(Y)
- / Pz (.’t) Pz, (y - ‘T) dx

o0

11



1
= / 1pe, (y dx
1
= / pwz
1
_ / 1 for0<y—xz<1 d
o 0 otherwise

1 fory—1<z<y de
0 otherwise

(e}

[}

l
L

max(0,y— 1)

= max{0, min(1,y) — max(0,y — 1)}
0 fory <0

_ Y for0<y<1

o 2—y for1<y<2
0 for y > 2

This p.d.f. is shown in Figure 3, which was produced using the following
Python program:

from matplotlib.numerix import x
from numarray import =
from pylab import plot, subplot, legend, axis, xlabel, ylabel, text, show

Error.setMode (all=None, overflow=’warn’, underflow=’ignore’, dividebyzero="w

plOt([71,0317233] 7[()’03170;0])
axis([—1,3,-0.5,2])

xlabel ('y’)

ylabel ("p(y)’)

show ()

This p.d.f. is shown in Figure 3, which was produced using the following
Matlab program:

hold off

subplot (111)

plot ([-1,0,1,2,3],[0,0,1,0,0])
hold on

axis([—1,3,-0.5,2])

xlabel ('y’)

ylabel ("p(y)’)

b. Using Bayes’ Rule, we have

pl‘lvy(xhy)

Pm1|y($1|y) = py(y)

12



Py|ay (y|$1) Pz, (331)
py(y)

We already know p,(y) and p,, (z1). Finding py,, (y|z1) is a matter of
realizing that y = x1 + x2 implies that, given x1, y is simply x5 offset by
a constant. Thus,

Pylas (Yl21) = Pay (Y — 1)

and

Pas (Y — 1) Pay (1)
py(y)
for0<y<land0<z; <y
= 1y forl<y<2andy—1<2 <1
otherwise

Payfy(21]y)

Q |=

O

See Figure 4, which was produced by the following Python program:

from matplotlib.numerix import x
from numarray import
from pylab import plot, subplot, legend, axis, xlabel, ylabel, text, show

)

Error.setMode (all=None, overflow=’warn’, underflow="ignore’, dividebyzero="w
subplot (211)
for y in arange (0.1, 1.1, stride=0.1)

x = array ([0,0,y,y,1,1])

Px_given.y = array([0,1.0/y,1.0/y,0,0,0])
plot (x,Px_given_y)

xlabel (r’$x_1%")
ylabel (r’$p(x_1 \ given \ 0<y<1)$’)
axis ([~0.1,1.1,0,12])

subplot (212)

for y in arange (1.0, 2.0, stride=0.1)
X = arra}’([ovovy_]-vy_]-v]-v]-”
Px_given_.y = array([0,0,0,1.0/(2-y),1.0/(2—y),0])
plot (x,Px_given_y)

xlabel (7$x_1%")

ylabel ("$p(x_1 \ given \ 1<y<2)$’)
axis ([—0.1,1.1,0,12])

show ()

See Figure 4, which was produced by the following Matlab program:

13



hold off

subplot (211)

hold on

for y = 0.1:0.1:1
x = [0,0,y,y,1]
Px_given.y = [0,1.0/y,1.0/y,0,0]
plot (x,Px_given_y ,’b’)

end

xlabel ("x_1")

ylabel (7 p( 1 | O<y<1)’)
axis ([—0.1,1.1,0,12])

subplot (212)

hold on

for y =1.0:0.1:1.9
x = [0,y—1,y—1,1,1]
Px_given.y = [0,0,1.0/(2-y),1.0/(2—y) ,0]
plot (x,Px_given_y ,’r’)

end

xlabel ("x_17)

ylabel ('p(x-1 | I<y<2)’)
axis ([-0.1,1.1,0,12])

c. Repeating the above using normal distributions, we get

py(y) = (Pxy * Pay)(y)
— [ e @paty-a)da

— 00

[ () ()
= —_—e 2 —e 2 €T
oo 21 2T

X1 —@s?—20y+4?)
= —e 2 dzx
o 2T

e o]

2 2 2
o q —(12—zy+?lefyT+%)
:/ —e 23 dx
oo 2T

2

1 (( 44t
T—3 1 3 da

M

= -y /Oo 1 —(@=%)* ¢4
VT Y !
1

14



= N(0,2)
Similarly,

Pao (Y — 1) Pay (1)
Py(y)

| —w=ap)? =
——e 2 —=e 2
Ve Vo

1 =2
L e
VA
1 y2—4wqy+4a2?

vVl
Nz

pzlly(x1|y) =

_ L @y

_ y 1
- v (53)

See Figure 5, which was produced by the following Python program:

from matplotlib.numerix import

from numarray import

from pylab import plot, subplot, legend, axis, xlabel, ylabel, text, show
Error.setMode (all=None, overflow=’warn’, underflow=’ignore’, dividebyzero="w

import LinearAlgebra as la

subplot (211)

y = arange(—5,5,0.01)

p = (1.0/sqrt(4xpi))*(exx(—(y=xx2)/4))
plot (y,p)

xlabel (r’8y$ )

ylabel (r’$p(y)$")

axis ([~5,5,-0.2,1.0])

subplot (212)

y = 1.6

x = arange(—5,5,0.01)

b= (1.0/sqrt (pi))s(exs(—((x-y /2)552)))
plot (x,p)

xlabel (r’$x_18")

ylabel (r’$p(x_1 \ given \ y=1.6)$")
axis ([—=5,5,-0.2,1.0])

show ()

See Figure 5, which was produced by the following Matlab program:
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subplot (211);

y = —5:0.01:5;

b= (1.0/sqrt (4pi))x(exp(—(y. 2)/4));
plot (y.p);

xlabel ('y’);

ylabel ("p(y)’);

axis ([-5,5,-0.2,1.0]);

subplot (212);

y = 1.6;

x = —5:0.01:5;

p = (1.0/sqrt(pi))*(exp(—((x~y/2).72)));
plot (x,p);

xlabel ("x_17);
ylabel ('p(x.1 | y=1
axis ([=5,5,-0.2,1.0]

I

d. The point of this problem is to show that probability density functions are
in general not closed under linear combinations of i.i.d. random variables.
That is, given two i.i.d. random variables x; and zo with distribution
of type A, the random variable y = x; + 22 does not in general have
a distribution of type A. Gaussian (a.k.a normal) distributions are an
exception. In fact, Gaussians are the only non-trivial family of functions
that are both closed and linear under convolution (and therefore under
addition of i.i.d. random variables):

N (g1, 07) % N (p2, 03) = N + pa, 07 + 03)

Problem 6: Probabilistic Modeling

Let z € {0,1} denote a person’s affective state (x = 0 for “positive-feeling
state”, and = 1 for “negative-feeling state”). The person feels positive with
probability 6;. Suppose that an affect-tagging system (or a robot) recognizes
her feeling state and reports the observed state (variable y) to you. But this
system is unreliable and obtains the correct result with probability 65.

a. Represent the joint probability distribution P(z,y|d) for all z,y (a 2x2
matrix) as a function of the parameters 6 = (1, 65).

b. The Maximum Likelihood estimation criterion for the parameter 6 is de-
fined as:

n
Oy = argmgme(tl, ey tn; ) = argmeapr(tiW)

i=1

where we have assumed that each data point ¢; is drawn independently
from the same distribution so that the likelihood of the data is L(t1, ..., t,; 0) =

16



I1 p(t:]0). Likelihood is viewed as a function of the parameters, which de-
i=1

pends on the data. Since the above expression can be technically challeng-
ing, we maximize the log-likelihood log L(t1, ..., t,; @) instead of likelihood.
Note that any monotonically increasing function (i.e., log function) of the
likelihood has the same maxima. Thus,

n
Opr = argmgmxlogL(tl, ey tn; ) = argmgxx;logp(tiW)
=

Suppose we get the following joint observations ¢ = (x,y).

OOHHOHH‘&
O)—lo»—tor—*o‘@

What are the maximum-likelihood (ML) values of 6; and 657 (Hint. Since
P(z,yl0) = P(y|z,02)P(x|01), the estimation of the two parameters can
be done separately in the log-likelihood criterion.)

Solution:

a. The probability mass function (pmf) of z € {0,1} is
_ 91, z=0
P@V‘{19h xl}

The conditional pmf of y € {0,1} given that x =0 is

0, =0
P@m=®={12% %_1}

The conditional pmf of y given that x =1 is

1—0s, y=0
Puo=1)={ =% v

Use P(z,y) = P(y|z)P(x) to tabulate the joint pmf of (x,y).

P(0,0) P(0,1) \ _ 620, (1—02)0,
1,1) > B ( (1=62)(1—=01) 62(1—61) >

PWW)_(}%Lm P,

17



b. We select (01, 62) to maximize the log-likelihood of the samples {(x;,y;),i =
1,...,n} which may be expressed as

J(91,92) = Zlogp(xwyz)

— Z (log P(yi|z;) + log P(z;))

%

= <Z logP(y¢|xi)> + (Z logP(IL‘i))

= Ja(O2) + Ji(61)

Hence, we choose 61 to maximize

ZlogP(xi)
= N(x=1)log(l—01)+ (n— N(xz=1))logb,

J1(61)

where N(z = 1) = ), ;. Differentiating w.r.t. 6; gives
0Ji1  —N(x=1) n n—N(z=1)

80, 1—0, 0,
We set this derivative to zero and solve for 6; to obtain
~ Nz =1
g —1_ Ne=1
n

Similarly, we choose 62 to maximize
Ja(02) = Y log Pyila:)

= N(z=y)logbs + (n — N(z =y))log(1l - 62)

where N(z = y) = >, (x;y; + (1 — 23)(1 — 9;)). Differentiating Jo w.r.t.
0, setting to zero and solving for 65 gives

5, - Nez=yv)
n

For the example data, @\1 = %, 52 = %. Thus,
Ply)=( 20 o Loeh
(1—02)(1—01) 062(1—6h)
The maximum likelihood of the data under this model is

~ 4\® /3\°
HP(:ri,yi)—<7> <7) ~ 7.044 x 107°
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Problem 7: Monty Hall

To get credit for this problem, you must not only write your own correct solution,
but also write a computer simulation (in either Matlab or Python) of the process
of playing this game:

Suppose I hide the ring of power in one of three identical boxes while you
weren’t looking. The other two boxes remain empty. After hiding the ring of
power, I ask you to guess which box it’s in. I know which box it’s in and, after
you’ve made your guess, I deliberately open the lid of an empty box, which is
one of the two boxes you did not choose. Thus, the ring of power is either in the
box you chose or the remaining closed box you did not choose. Once you have
made your initial choice and I've revealed to you an empty box, I then give you
the opportunity to change your mind — you can either stick with your original
choice, or choose the unopened box. You get to keep the contents of whichever
box you finally decide upon.

e What choice should you make in order to maximize your chances of re-
ceiving the ring of power? Explain your answer.

e Write a simulation. There are two choices in this game for the contestant
in this game: (1) choice of box, (2) choice of whether or not to switch. In
your simulation, first let the host choose a random box to place the ring
of power. Show a trace of your program’s output for a single game play,
as well as a cumulative probability of winning for 1000 rounds of the two
policies (1) to choose a random box and then switch and (2) to choose a
random box and not switch.

Solution:

e Always switch your answer to the box you didn’t choose the first time.
This reason is as follows. You have a 1/3 chance of initially picking the
correct box. That is, there is a 2/3 chance the correct answer is one of
the other two boxes. Learning which of the two other boxes is empty does
not change these probabilities; your initial choice still has a 1/3 chance
of being correct. That is, there is a 2/3 chance the remaining box is the
correct answer. Therefore you should change your choice.

More formally,
event_right_first_choice = the event that your first choice is right
event_wrong_first_choice = the event that your first choice is wrong

event_right_when_change = the event that you get the ring when changing
your initial choice

event_an_empty_box_opened = the event that an empty box is opened after
your first choice

First, P(event_right first_choice) = 1/3
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Second, P(event_right_when_change | event_an_empty_box_opened)

= P(event_right_when_change, event_right_first_choice | event_an_empty_box_opened)
+ P(event_right_when_change, event_wrong_first_choice | event_an_empty_box_opened)

= P(event_right_when_change | event_right_first_choice, event_an_empty_box_opened)
P(event_right_first_choice) + P(event_right_when_change | event_wrong_first_choice,
event_an_empty_box_opened) P(event_wrong_first_choice)

= 0%1/3 + 1%2/3 = 2/3
Thus, P(event_right_when_change | event_an_empty_box_opened) > P(event_right_first_choice)

Another way to understand the problem is to extend it to 100 boxes, only
one of which has the ring of power. After you make your initial choice,
I then open 98 of the 99 remaining boxes and show you that they are
empty. Clearly, with very high probability the ring of power resides in the
one remaining box you did not initially choose.

Here is a sample simulation output for the Monty Hall problem:

actual:
guessl :
reveal:
swap

guess?2:

N O WN -

actual:
guessl :
reveal:
swap

guess?2:

WO = Www

actual:
guessl :
reveal:
swap

guess?2 :

WO W

swap 0

win 1 292
lose : 708
win /(win+lose): 0.292

actual: 3
guessl: 1
reveal: 2
swap 1
guess2: 3
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actual:
guessl :
reveal:
swap

guess2:

W = N = =

actual:
guessl :
reveal:
swap

guess2:

W = N W

swap 1

win : 686
lose : 314
win /(win+lose ): 0.686

Here is a Python program that generates the Monty Hall simulation output
above:

from matplotlib.numerix import x

from numarray import =

from pylab import plot, subplot, legend, axis, xlabel, ylabel, text, show, r
Error.setMode (all=None, overflow=’warn’, underflow=’ignore’, dividebyzero="w
from LinearAlgebra import x

for swap in range(2)
win =0
lose = 0
for 1 in range(1000)
actual = int (rand()*3)+1;
guessl = int (rand ()*3)+1;

if guessl = actual
reveal = int (rand ()*2)+1;
if reveal = actual
reveal = reveal 4+ 1;
else:
if guessl = 1 and actual = 2
reveal = 3;
elif guessl = 1 and actual = 3
reveal = 2;
elif guessl = 2 and actual = 1
reveal = 3;
elif guessl = 2 and actual = 3
reveal = 1;
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elif guessl = 3 and actual = 1

reveal = 2;
elif guessl = 3 and actual = 2
reveal = 1;
if swap = 1
if guessl = 1 and reveal = 2
guess2 = 3;
elif guessl = 1 and reveal = 3
guess2 = 2;
elif guessl = 2 and reveal = 1
guess2 = 3;
elif guessl = 2 and reveal = 3
guess2 = 1;
elif guessl = 3 and reveal =1
guess2 = 2;
elif guessl = 3 and reveal = 2
guess2 = 1;
else:
guess2 = guessl;
if guess2 = actual
win = win + 1;
else:
lose = lose + 1;

# only print trace for first 3 games

if i <3
print ’actual: ’, actual
print ’guessl: ’, guessl
print ’reveal: ’, reveal
print ’swap : ', swap
print ’guess2: ’, guess2

# print results for each game play policy

print ’swap 27, swap
print ’win ;7. win
print ’lose :7, lose
print ’'win/(wintlose):’, float(win) / float(win + lose)

Here is a Matlab program that simulates the Monty Hall simulation output
above:

actual = floor (rand()*3)+1;
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guessl = floor (rand ()*3)+1;

if guessl = actual
reveal = floor (rand ()*2)+1;
if reveal = actual
reveal = reveal + 1;
end
else
if guessl =— 1 && actual =— 2
reveal = 3;
elseif guessl = 1 && actual = 3
reveal = 2;
elseif guessl = 2 && actual = 1
reveal = 3;
elseif guessl = 2 && actual =— 3
reveal = 1;
elseif guessl = 3 && actual =1
reveal = 2;
elseif guessl = 3 && actual = 2
reveal = 1;
end
end
if swap =1
if guessl = 1 && reveal = 2
guess2 = 3;
elseif guessl = 1 && reveal =— 3
guess2 = 2;
elseif guessl = 2 && reveal =— 1
guess2 = 3;
elseif guessl = 2 && reveal = 3
guess2 = 1;
elseif guessl = 3 && reveal =1
guess2 = 2;
elseif guessl = 3 && reveal = 2
guess2 = 1;
end
else
guess2 = guessl;
end
if guess2 = actual
win = win + 1;
else
lose = lose + 1;
end

%% only print trace for first 3 games
if 1 <=3
actual
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guessl
reveal
swap
guess2
end
end
%% print results for each game play policy
swap
win / (win + lose)
end
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Figure 2: The original data and the data transformed into the coordinate system
defined by the eigenvectors of their covariance matrix.
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Figure 4: The probability density function of z; given certain values of y, where
y =21 + o2 and 7 and x5 are i.i.d. uniform random variables.
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