
Problem Set 2

MAS 622J/1.126J: Pattern Recognition and Analysis

Due: 5:00 p.m. on September 30

[Note: All instructions to plot data or write a program should be carried
out using Matlab. In order to maintain a reasonable level of consistency and
simplicity we ask that you do not use other software tools.]

If you collaborated with other members of the class, please write their names
at the end of the assignment. Moreover, you will need to write and sign the
following statement: “In preparing my solutions, I did not look at any old
homeworks, copy anybody’s answers or let them copy mine.”

Problem 1: [10 Points]

In many pattern classification problems we have the option to either assign
a pattern to one of c classes, or reject it as unrecognizable - if the cost to
reject is not too high. Let the cost of classification be defined as:

λ(ωi|ωj) =


0 if ω i = ω j, (i.e. Correct Classification)

λr if ω i = ω 0, (i.e. Rejection)

λs Otherwise, (i.e. Substitution Error)

Show that for the minimum risk classification, the decision rule should asso-
ciate a test vector x with class ω i, if P(ω i|x ) ≥ P(ω j|x ) for all j and and
P(ω i — x ) ≥ 1 - λr

λs
, and reject otherwise.

Solution:
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Average risk is choosing class ωi:

R(ωi|x) =
c∑
j=1

λ(ωi|ωj)P (ωj|x) = 0.P (ωi|x) +
c∑

j=1,j!=i

λsP (ωj|x)

where λ(ωi|ωj) is used to mean the cost of choosing class ωi where the true
class is ωj.

Hence:
R(ωi|x) = λs(1− P (ωi|x))

Associate x with the class ωi if highest posterior class probability and the
average risk is less than the cost of rejection:

λs(1− P (ωi|x)) ≤ λr

P (ωi|x) ≥ 1− λr/λs

Problem 2: [16 Points]

Use signal detection theory as well as the notation and basic Gaussian as-
sumptions described in the text to address the following.

a. Prove that P(x > x∗|x ∈ w2) and P(x > x∗|x ∈ w1), taken together,
uniquely determine the discriminability d′

Let x = x and x∗ = x∗. Based on the Gaussian assumption, we see that

P (x > x∗|x ∈ wi) = P
(
x−µi
σi

> x∗−µi
σi
|x ∈ wi

)
∼ N(0, 1) for i = 1, 2

Thus, we know
(
x−µ2
σ2

)
from the hit rate P (x > x∗|x ∈ w2) and

(
x−µ1
σ1

)
from the false alarm rate P (x > x∗|x ∈ w1), and these let us calculate
the discriminability.

∣∣∣∣x∗ − µ1

σ1
− x∗ − µ2

σ2

∣∣∣∣ =

∣∣∣∣x∗ − µ1

σ
− x∗ − µ2

σ

∣∣∣∣
=

∣∣∣∣µ2 − µ1

σ

∣∣∣∣
=
|µ2 − µ1|

σ
= d′
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Therefore d′ is uniquely determined by the hit and false alarm rates.

b. Use error functions erf(∗) to express d′ in terms of the hit and false
alarm rates. Estimate d′ if P(x > x∗|x ∈ w1) = .7 and P(x > x∗|x ∈
w2) = .5. Repeat for d′ if P(x > x∗|x ∈ w1) = .85 and P(x > x∗|x ∈
w2) = .15.

There are a couple of ways in which you can proceed. This document
will detail one of them.

Let y be a random variable such that P (y > y∗|y ∈ wi) ∼ N(0, 1) for
i = 1, 2.

1√
2π

∫ y∗

0

e
t2

2 dt =
1

2

(
1√
2π

∫ y∗

−y∗
e

t2

2 dt

)
let u =

t2

2
; du =

dt√
2

=
1

2

(
1√
π

∫ y∗√
2

−y∗√
2

e−udu

)

=
1

2

(
2√
π

∫ y∗√
2

0

e−udu

)

=
1

2
erf

(
y∗√

2

)

Then, given that P (x > x∗|x ∈ wi) = P
(
x−µi
σi

> x∗−µi
σi
|x ∈ wi

)
∼

N(0, 1) for i = 1, 2.
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P

(
x− µi
σi

>
x∗ − µi
σi

|x ∈ wi
)

= 1− P
(
x− µi
σi

<
x∗ − µi
σi

|x ∈ wi
)

=

1−
(

1
2

+ 1
2
erf

(
x∗−µi√

2σi

))
if x∗−µi

σi
> 0

1−
(

1
2
− 1

2
erf

(
µi−x∗√

2σi

))
if x∗−µi

σi
< 0

=


1
2
− 1

2
erf

(
x∗−µi√

2σi

)
if x∗−µi

σi
> 0

1
2

+ 1
2
erf

(
µi−x∗√

2σi

)
if x∗−µi

σi
< 0

=


1
2

(
1− erf

(
x∗−µi√

2σi

))
if x∗−µi

σi
> 0

1
2

(
1 + erf

(
µi−x∗√

2σi

))
if x∗−µi

σi
< 0

Therefore:

x∗ − µi
σi

=
√

2
(
erf−1[1− 2P (x > x∗|x ∈ wi)]

)
if P (x > x∗|x ∈ wi) < .5

µi − x∗

σi
=
√

2
(
erf−1[2P (x > x∗|x ∈ wi)− 1]

)
if P (x > x∗|x ∈ wi) > .5

Then to find the values of erf−1() use a table of erf , a table of the cu-
mulative normal distribution, or use Matlab erf and erfinv functions.

d∗1 =

∣∣∣∣−µ1 − x∗

σ
− x∗ − µ2

σ

∣∣∣∣
=
∣∣∣−√2

(
erf−1[2(.7)− 1]

)
−
√

2
(
erf−1[2(.5)− 1]

)∣∣∣
=
∣∣∣−√2

(
erf−1[.4]

)
−
√

2
(
erf−1[0]

)∣∣∣
= .??
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d∗2 =

∣∣∣∣−µ1 − x∗

σ
− x∗ − µ2

σ

∣∣∣∣
=
∣∣∣−√2

(
erf−1[2(.85)− 1]

)
−
√

2
(
erf−1[1− 2(.15)]

)∣∣∣
=
∣∣∣−√2

(
erf−1[.7]

)
−
√

2
(
erf−1[.7]

)∣∣∣
= 0

c. Given that the Gaussian assumption is valid, calculate the Bayes error
for both the cases in (b).

According to Problem 3

Pr[error] = P(w1)ε1 + P(w2)ε2

where ε1 =

∫
χ2

p(x|w1)dx and ε2 =

∫
χ1

p(x|w2)dx

Since the regions χ1 and χ2 are defined by our decision boundary x∗.
We can see that

ε1 =

∫
χ2

p(x|w1)dx = P (x < x∗|x ∈ w1) = 1− P (x > x∗|x ∈ w1)

Similarly

ε2 =

∫
χ1

p(x|w2)dx = P (x > x∗|x ∈ w2)

Therefore,

Pr[error1] = (1− .7)P (w1) + (.5)P (w2)

Pr[error2] = (1− .85)P (w1) + (.15)P (w2)

And if the priors are equally likely,

Pr[error1] = .5

Pr[error2] = .15
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d. Using a trivial one-line computation or a graph determine which case
has the higher d′, and explain your logic:

Case A: P(x > x∗|x ∈ w1) = .75 and P(x > x∗|x ∈ w2) = .45.

Case B: P(x > x∗|x ∈ w1) = .2 and P(x > x∗|x ∈ w2) = .9.

From part (b) we can calculate the discriminability given the hit and false
alarm rates, and see that Case B has a higher discriminability.

d∗1 =

∣∣∣∣−µ1 − x∗

σ
− x∗ − µ2

σ

∣∣∣∣
=
∣∣∣−√2

(
erf−1[2(.7)− 1]

)
−
√

2
(
erf−1[1− 2(.4)]

)∣∣∣
=
∣∣∣−√2

(
erf−1[.4]

)
−
√

2
(
erf−1[.2]

)∣∣∣
= .777

d∗2 =

∣∣∣∣x∗ − µ1

σ
+
µ2 − x∗

σ

∣∣∣∣
=
∣∣∣√2

(
erf−1[1− 2(.2)]

)
+
√

2
(
erf−1[2(.8)− 1]

)∣∣∣
=
∣∣∣√2

(
erf−1[.4]

)
+
√

2
(
erf−1[.6]

)∣∣∣
= 1.366

Key point of this problem: The error function erf is related to the cumu-
lative normal distribution. Assuming that the probability of x belonging to
one of two classes is Gaussian, then knowing the values of the false alarm
and hit rates for an arbitrary x∗ is enough to compute the discriminabil-
ity d′. Moreover, if the Gaussian assumption holds, a determination of the
discriminability allows us to calculate the Bayes error rate.
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Problem 3: [16 Points]

a. Show that the maximum likelihood (ML) estimation of the mean for
a Gaussian is unbiased but the ML estimate of variance is biased (i.e.,
slightly wrong). Show how to correct this variance estimate so that it
is unbiased.

b. For this part you’ll write a program with Matlab to explore the biased
and unbiased ML estimations of variance for a Gaussian distribution.
Find the data for this problem on the class webpage as ps2.dat. This file
contains n=5000 samples from a 1-dimensional Gaussian distribution.

(a) Write a program to calculate the ML estimate of the mean, and
report the output.

(b) Write a program to calculate both the biased and unbiased ML
estimate of the variance of this distribution. For n=1 to 5000, plot
the biased and unbiased estimates of the variance of this Gaussian.
This is as if you are being given these samples sequentially, and
each time you get a new sample you are asked to re-evaluate your
estimate of the variance. Give some interpretation of your plot.

Problem 4: [16 Points]

Suppose x and y are random variables. Their joint density, depicted below,
is constant in the shaded area and 0 elsewhere,

a. Let ω1 be the case when x ≤ 0, and ω2 be the case when x > 0.
Determine the a priori probabilities of the two classes P(ω1) and P(ω2).
y is the observation. from which we infer whether ω1 or ω2 happens.
Find the likelihood functions, namely, the two conditional distributions
p(y|ω1) and p(y|ω2).

b. Find the decision rule that minimizes the probability of error, and
calculate what the probability of error is. Please note that there will
be ambiguities at decision boundaries, but how you classify when y falls
on the decision boundary doesn’t affect the probability of error.
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Figure 1: The joint distribution of x and y.
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