
Problem Set 2

MAS 622J/1.126J: Pattern Recognition and Analysis

Due: 5:00 p.m. on September 30

[Note: All instructions to plot data or write a program should be carried
out using Matlab. In order to maintain a reasonable level of consistency and
simplicity we ask that you do not use other software tools.]

If you collaborated with other members of the class, please write their
names at the end of the assignment. Moreover, you will need to write and
sign the following statement: “In preparing my solutions, I did not look at
any old homeworks, copy anybody’s answers or let them copy mine.”

Problem 1: [10 Points]

In many pattern classification problems we have the option to either assign
a pattern to one of c classes, or reject it as unrecognizable - if the cost to
reject is not too high. Let the cost of classification be defined as:

λ(ωi|ωj) =


0 if ω i = ω j, (i.e. Correct Classification)

λr if ω i = ω 0, (i.e. Rejection)

λs Otherwise, (i.e. Substitution Error)

Show that for the minimum risk classification, the decision rule should asso-
ciate a test vector x with class ω i, if P(ω i|x ) ≥ P(ω j|x ) for all j and and
P(ω i | x ) ≥ 1 - λr

λs
, and reject otherwise.

Solution: Average risk is choosing class ωi:

R(ωi|x) =
c∑
j=1

λ(ωi|ωj)P (ωj|x) = 0∗P (ωi|x) +
c∑

j=1,j!=i

λsP (ωj|x)
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where λ(ωi|ωj) is used to mean the cost of choosing class ωi where the true
class is ωj.

Hence:
R(ωi|x) = λs(1− P (ωi|x))

Associate x with the class ωi if highest posterior class probability and the
average risk is less than the cost of rejection:

λs(1− P (ωi|x)) ≤ λr

P (ωi|x) ≥ 1− λr/λs

Problem 2: [16 points]

In a particular binary hypothesis testing application, the conditional density
for a scalar feature x given class w1 is

p(x|w1) = k1 exp(−x2/20)

Given class w2 the conditional density is

p(x|w2) = k2 exp(−(x− 6)2/12)

a. Find k1 and k2, and plot the two densities on a single graph using
Matlab.

Solution: We solve for the parameters k1 and k2 by recognizing that
the two equations are in the form of the normal Gaussian distribution.

k1e
−x2

20 =
1√

2πσ1
2
e
−(x−µ1)2

2σ2
1

−x2

20
=
−(x− µ1)

2

2σ2
1

µ1 = 0;σ2
1 = 10

k1 =
1√
20π
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Figure 1: The pdf and decision boundaries

In a similar fashion, we find that

µ2 = 6;σ2
2 = 6

k2 =
1√
12π

These distributions are plotted in Figure 1.

b. Assume that the prior probabilities of the two classes are equal, and
that the cost for choosing correctly is zero. If the costs for choosing
incorrectly are C12 =

√
3 and C21 =

√
5 (where Cij corresponds to

predicting class i when it belongs to class j), what is the expression for
the conditional risk?

Solution: The conditional risk for Two-Category Classification is dis-
cussed in Section 2.2.1 in D.H.S. where we can see that the formulas for
the risk associated with the action, αi, of classifying a feature vector,
x, as class, ωi, is different for each action:

R(α1|x) = λ11P (ω1|x) + λ12P (ω2|x)

R(α2|x) = λ21P (ω1|x) + λ22P (ω2|x)

The prior probabilities of the two classes are equal:

P (ω1) = P (ω2) =
1

2
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The assumption that the cost for choosing correctly is zero:

λ11 = 0, λ22 = 0

The costs for choosing incorrectly are given as C12 and C21:

λ12 = C12 =
√

3

λ21 = C21 =
√

5

Thus the expression for the conditional risk of α1 is:

R(α1|x) = λ11P (ω1|x) + λ12P (ω2|x)

R(α1|x) = 0P (ω1|x) +
√

3P (ω2|x)

R(α1|x) =
√

3P (ω2|x)

And the expression for the conditional risk of α2:

R(α2|x) = λ21P (ω1|x) + λ22P (ω2|x)

R(α2|x) =
√

5P (ω1|x) + 0P (ω2|x)

R(α2|x) =
√

5P (ω1|x)

c. Find the decision regions which minimize the Bayes risk, and indicate
them on the plot you made in part (a)

Solution: The Bayes Risk is the integral of the conditional risk when
we use the optimal decision regions, R1 and R2. So, solving for the
optimal decision boundary is a matter of solving for the roots of the
equation:

R(α1|x) = R(α2|x)
√

3P (ω2|x) =
√

5P (ω1|x)
√

3P (x|ω2)P (ω2)

P (x)
=

√
5P (x|ω1)P (ω1)

P (x)

Given the priors are equal this simplifies to:
√

3P (x|ω2) =
√

5P (x|ω1)
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Next, using the values, k1 and k2, from part (a), we have expressions
for px|ω1 and px|ω2 .

√
3

1√
12π

e
−(x−6)2

12 =
√

5
1√
20π

e
−x2

20

e
−(x−6)2

12 = e
−x2

20

−(x− 6)2

12
=
−x2

20
20(x2 − 12x+ 36) = 12x2

8x2 − 240x+ 720 = 0

The decision boundary is found by solving for the roots of this quadratic,
x1 = 15− 3

√
15 = 3.81 and x2 = 15 + 3

√
15 = 26.62

d. For the decision regions in part (c), what is the numerical value of the
Bayes risk?

Solution: For x < 15− 3
√

15 the decision rule will choose ω1

For 15− 3
√

15 < x < 15 + 3
√

15 the decision rule will choose ω2

For 15 + 3
√

15 < x the decision rule will choose ω1

Thus the decision region R1 is x < 15− 3
√

15 and x > 15 + 3
√

15, and
the decision region R2 is 15− 3

√
15 < x < 15 + 3

√
15.
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Risk =

∫
R1

λ11P (ω1|x) + λ12P (ω2|x)

+

∫
R2

λ21P (ω1|y) + λ22P (ω2|y)

=

∫
R1

λ12P (y|ω2)P (ω2) +

∫
R2

λ21P (y|ω1)P (ω1)

=

∫ y=15−3
√

15

y=− inf

√
3N(6, 6)

1

2
+

∫ y=inf

y=15+3
√

15

√
3N(6, 6)

1

2

+

∫ y=15+3
√

15

y=15−3
√

15

√
5N(0, 10)

1

2

=

√
3

2
(
1

2
− 1

2
erf((6− (15− 3

√
15))/

√
12)) +

√
3

2
(
1

2
− 1

2
erf((15 + 3

√
15− 6)/

√
12))

+

√
5

2
(
1

2
erf((15 + 3

√
15)/
√

20)− 1

2
erf((15− 3

√
15)/
√

20))

= .2827

Problem 3: [16 points]

Let’s consider a simple communication system. The transmitter sends out
messages m = 0 or m = 1, occurring with a priori probabilities 3

4
and 1

4

respectively. The message is contaminated by a noise n, which is indepen-
dent from m and takes on the values -1, 0, 1 with probabilities 1

8
, 5

8
, and 2

8

respectively. The received signal, or the observation, can be represented as
r = m + n. From r, we wish to infer what the transmitted message m was
(estimated state), denoted using m̂. m̂ also takes values on 0 or 1. When
m = m̂, the detector correctly receives the original message, otherwise an
error occurs.

a. Find the decision rule that achieves the maximum probability of correct
decision. Compute the probability of error for this decision rule.

Solution: It is equivalent to find the decision rule that achieves the
minimum probability of error. The receiver decides the transmitted
message is 1, i.e., m̂ = 1 if
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Figure 2: A simple receiver

P (r|m = 1) · Pr(m = 1) ≥ P (r|m = 0) · Pr(m = 0)

P (r|m = 1) ≥ P (r|m = 0) · 3 (1)

Otherwise the receiver decides m̂ = 0. The likelihood functions for
these two cases are

P (r|m = 1) =


1
8

if r = 0
5
8

if r = 1
2
8

if r = 2

0 otherwise

P (r|m = 0) =


1
8

if r = −1
5
8

if r = 0
2
8

if r = 1

0 otherwise

Eq. 1 holds only when r = 2. Therefore, the decision rule can be
summarized as

m̂ =

{
1 if r = 2

0 otherwise

The probability of error is as follows:

Pr(e) = Pr(m̂ = 1|m = 0) · Pr(m = 0) + Pr(m̂ = 0|m = 1) · Pr(m = 1)

= Pr(r = 2|m = 0) · Pr(m = 0) + Pr(r 6= 2|m = 1) · Pr(m = 1)

= 0 + (
1

8
+

5

8
) · 1

4
=

3

16
= 0.1875
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Figure 3: The pdf of n

b. Let’s have the noise n be a continuous random variable, uniformly
distributed between −3

4
and 2

4
, and still statistically independent of m.

First, plot the pdf of n. Then, find a decision rule that achieves the
minimum probability of error, and compute the probability of error.

Solution:

The uniform distribution is plotted in Figure 3.

The decision rule is still determined by using Eq. 1. The likelihood
functions become continuous, instead of discrete in (a):

P (r|m = 1) =

{
4
5

if 1
4
< r ≤ 6

4

0 otherwise

P (r|m = 0) =

{
4
5

if −3
4
< r ≤ 2

4

0 otherwise

The interesting region is where the two pdf’s overlap with each other,
namely when 1

4
< r ≤ 2

4
. From Eq. 1, we know we should decide m̂ = 0

for this range. The decision rule can be summarized as
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m̂ =


0 if −3

4
< r ≤ 1

4

0 if 1
4
< r ≤ 2

4

1 if 2
4
< r ≤ 6

4

Note that at the decision boundaries, there is ambiguity on which de-
cision we should make. Again, either decision won’t change the proba-
bility of error, so it is acceptable to decide both ways.

The probability of error is

Pr(e) = Pr(m̂ = 1|m = 0) · Pr(m = 0) + Pr(m̂ = 0|m = 1) · Pr(m = 1)

= Pr(
1

4
< r ≤ 2

4
|m = 1) · Pr(m = 1)

= (
2

4
− 1

4
) · 4

5
· 1

4
=

1

20

Problem 4: [16 points]

[Note: Use Matlab for the computations, but make sure to explicitly con-
struct every transformation required, that is either type it or write it. Do
not use Matlab if you are asked to explain/show something.]

Consider the three-dimensional normal distribution p(x|w) with mean µ
and covariance matrix Σ where

µ =

 3
1
2

 ,Σ =

 1 0 0
0 5 4
0 4 5

 .

Compute the matrices representing the eigenvectors and eigenvalues Φ
and Λ to answer the following questions:
Solution:

Λ =

 1 0 0
0 1 0
0 0 9

 ,Φ =

 1 0 0
0 − 1√

2
1√
2

0 1√
2

1√
2

 .

9



a. Find the probability density at the point x0 = (5 6 3)T

Solution:

p(x0|ω) =
1

(2π)3/2|Σ|1/2
e
−(x0−µ)TΣ−1(x0−µ)

2 (2)

|Σ| = 9; Σ−1 =

 1 0 0
0 5

9
−4
9

0 −4
9

5
9


The squared Mahalanobis distance from the mean to x0 is:

(x0 − µ)TΣ−1(x0 − µ) = 5
6
3

−
 3

1
2

T  1 0 0
0 5

9
−4
9

0 −4
9

5
9

 5
6
3

−
 3

1
2


= 14

We plug these values in to find that the density at x0 is:

p(x0|ω) = 1.2866e− 5

b. Construct an orthonormal transformation y = ΦTx. Show that for
orthonormal transformations, Euclidean distances are preserved (i.e.,
‖y‖2 = ‖x‖2).
Solution:

y = ΦTx

=

 1 0 0
0 − 1√

2
1√
2

0 1√
2

1√
2

T

x

To prove that for orthonormal transformations, Euclidean distances are
preserved we have to show that ||y||2 = ||x||2.
Proof : Let y be a random variable such that y = ATx where AT is an
orthonormal transformation (i.e., ATA = I)
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||y||2 = yTy

= (ATx)TATx

= xTAATx

= xTx

= ||x||2

c. After applying the orthonormal transformation add another transfor-
mation Λ−1/2 and convert the distribution to one centered on the ori-
gin with covariance matrix equal to the identity matrix. Remember
that Aw = ΦΛ−1/2 is a linear transformation (i.e., Aw(ax + by) =
aAwx + bAwy)

Solution:

u = Λ−1/2y

=

 1 0 0
0 1 0
0 0 1√

9

 y

Where u can also be expressed as u = Λ−1/2ΦTx

Let u = Aw
Tx where Aw = ΦΛ−1/2.

Given p(x|w) ∼ N(µ,Σ) then p(u|w) ∼ N(Aw
Tµ,Aw

TΣAw)

Since u is a result of a whitening transform to x, then the covariance
matrix of u is proportional to the Identity matrix I. In this case, since
Φ is a matrix of normalized eigenvectors of Σ and Λ is the eigenvalue
matrix, the transformation AT = Λ−1/2ΦT makes the covariance matrix
equal to I.

Therefore, to convert the distribution to one centered on the origin with
the covariance equal to the Identity matrix, it is enough to define a new
variable z such that z = Aw

Tx−Aw
Tµ. In that way p(z|w) ∼ N(0, 1).

d. Apply the same overall transformation to x0 to yield a transformed
point xw
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Solution:

xw = Aw
Tx0 −Aw

Tµ

= Aw
T (x0 − µ)

=

 1 0 0
0 − 1√

2
1√
2

0 1√
18

1√
18

 2
5
1


=

 2
−4√

2
6√
18


e. Calculate the Mahalanobis distance from x0 to the mean µ and from

xw to 0. Are they different or are they the same? Why?

Solution: The squared Mahalanobis distance from x0 to the mean µ,
we found in part (a), is .9514

The squared Mahalanobis distance from xw to 0 is:

xw
Txw =

 2
−4√

2
6√
18

T  2
−4√

2
6√
18

 = 14

The two distances are the same, as expected under any linear transfor-
mation.

Problem 5: [16 Points]

Use signal detection theory as well as the notation and basic Gaussian as-
sumptions described in the text to address the following.

a. Prove that P (x > x∗|x ∈ w2) and P (x > x∗|x ∈ w1), taken together,
uniquely determine the discriminability d′

Solution: Let x = x and x∗ = x∗. Based on the Gaussian assumption,

we see that P (x > x∗|x ∈ wi) = P
(
x−µi
σi

> x∗−µi
σi
|x ∈ wi

)
∼ N(0, 1)
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for i = 1, 2 Thus, we know
(
x−µ2

σ2

)
from the hit rate P (x > x∗|x ∈ w2)

and
(
x−µ1

σ1

)
from the false alarm rate P (x > x∗|x ∈ w1), and these let

us calculate the discriminability.

∣∣∣∣x∗ − µ1

σ1

− x∗ − µ2

σ2

∣∣∣∣ =

∣∣∣∣x∗ − µ1

σ
− x∗ − µ2

σ

∣∣∣∣
=

∣∣∣∣µ2 − µ1

σ

∣∣∣∣
=
|µ2 − µ1|

σ
= d′

Therefore d′ is uniquely determined by the hit and false alarm rates.

b. Use error functions erf(∗) to express d′ in terms of the hit and false
alarm rates. Estimate d′ if P (x > x∗|x ∈ w1) = .7 and P (x > x∗|x ∈
w2) = .5. Repeat for d′ if P (x > x∗|x ∈ w1) = .9 and P (x > x∗|x ∈
w2) = .15.

Solution: There are a couple of ways in which you can proceed. This
document will detail one of them.

Let y be a random variable such that P (y > y∗|y ∈ wi) ∼ N(0, 1) for
i = 1, 2.

1√
2π

∫ y∗

0

e
t2

2 dt =
1

2

(
1√
2π

∫ y∗

−y∗
e
t2

2 dt

)
let u =

t2

2
; du =

dt√
2

=
1

2

(
1√
π

∫ y∗√
2

−y∗√
2

e−udu

)

=
1

2

(
2√
π

∫ y∗√
2

0

e−udu

)

=
1

2
erf

(
y∗√

2

)
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Then, given that P (x > x∗|x ∈ wi) = P
(
x−µi
σi

> x∗−µi
σi
|x ∈ wi

)
∼

N(0, 1) for i = 1, 2.

P

(
x− µi
σi

>
x∗ − µi
σi

|x ∈ wi
)

= 1− P
(
x− µi
σi

<
x∗ − µi
σi

|x ∈ wi
)

=

1−
(

1
2

+ 1
2
erf

(
x∗−µi√

2σi

))
if x∗−µi

σi
> 0

1−
(

1
2
− 1

2
erf

(
µi−x∗√

2σi

))
if x∗−µi

σi
< 0

=


1
2
− 1

2
erf

(
x∗−µi√

2σi

)
if x∗−µi

σi
> 0

1
2

+ 1
2
erf

(
µi−x∗√

2σi

)
if x∗−µi

σi
< 0

=


1
2

(
1− erf

(
x∗−µi√

2σi

))
if x∗−µi

σi
> 0

1
2

(
1 + erf

(
µi−x∗√

2σi

))
if x∗−µi

σi
< 0

Therefore:

x∗ − µi
σi

=
√

2
(
erf−1[1− 2P (x > x∗|x ∈ wi)]

)
if P (x > x∗|x ∈ wi) < .5

µi − x∗

σi
=
√

2
(
erf−1[2P (x > x∗|x ∈ wi)− 1]

)
if P (x > x∗|x ∈ wi) > .5

Then to find the values of erf−1() use a table of erf , a table of the cu-
mulative normal distribution, or use Matlab erf and erfinv functions.

d∗1 =

∣∣∣∣−µ1 − x∗

σ
− x∗ − µ2

σ

∣∣∣∣
=
∣∣∣−√2

(
erf−1[2(.7)− 1]

)
−
√

2
(
erf−1[2(.5)− 1]

)∣∣∣
=
∣∣∣−√2

(
erf−1[.4]

)
−
√

2
(
erf−1[0]

)∣∣∣
= .5244
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d∗2 =

∣∣∣∣−µ1 − x∗

σ
− x∗ − µ2

σ

∣∣∣∣
=
∣∣∣−√2

(
erf−1[2(.9)− 1]

)
−
√

2
(
erf−1[1− 2(.15)]

)∣∣∣
=
∣∣∣−√2

(
erf−1[.8]

)
−
√

2
(
erf−1[.7]

)∣∣∣
= 2.6813

c. Given that the Gaussian assumption is valid, calculate the Bayes error
for both the cases in (b).

Solution: According to Problem 3

Pr[error] = P (w1)ε1 + P (w2)ε2

where ε1 =

∫
χ2

p(x|w1)dx and ε2 =

∫
χ1

p(x|w2)dx

Since the regions χ1 and χ2 are defined by our decision boundary x∗.
We can see that

ε1 =

∫
χ2

p(x|w1)dx = P (x < x∗|x ∈ w1) = 1− P (x > x∗|x ∈ w1)

Similarly

ε2 =

∫
χ1

p(x|w2)dx = P (x > x∗|x ∈ w2)

Therefore,

Pr[error1] = (1− .7)P (w1) + (.5)P (w2)

Pr[error2] = (1− .9)P (w1) + (.15)P (w2)

And if the priors are equally likely,

Pr[error1] = .4

Pr[error2] = .125
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d. Using a trivial one-line computation or a graph determine which case
has the higher d′, and explain your logic:

Case A: P (x > x∗|x ∈ w1) = .75 and P (x > x∗|x ∈ w2) = .35.

Case B: P (x > x∗|x ∈ w1) = .8 and P (x > x∗|x ∈ w2) = .25.

Solution: From part (b) we can calculate the discriminability given the hit
and false alarm rates, and see that Case B has a higher discriminability.

d∗1 =

∣∣∣∣−µ1 − x∗

σ
− x∗ − µ2

σ

∣∣∣∣
=
∣∣∣−√2

(
erf−1[2(.75)− 1]

)
−
√

2
(
erf−1[1− 2(.35)]

)∣∣∣
=
∣∣∣−√2

(
erf−1[.5]

)
−
√

2
(
erf−1[.3]

)∣∣∣
= 1.0598

d∗2 =

∣∣∣∣x∗ − µ1

σ
+
µ2 − x∗

σ

∣∣∣∣
=
∣∣∣√2

(
erf−1[1− 2(.25)]

)
+
√

2
(
erf−1[2(.8)− 1]

)∣∣∣
=
∣∣∣√2

(
erf−1[.5]

)
+
√

2
(
erf−1[.6]

)∣∣∣
= 1.5161

Key point of this problem: The error function erf is related to the cumu-
lative normal distribution. Assuming that the probability of x belonging to
one of two classes is Gaussian, then knowing the values of the false alarm
and hit rates for an arbitrary x∗ is enough to compute the discriminabil-
ity d′. Moreover, if the Gaussian assumption holds, a determination of the
discriminability allows us to calculate the Bayes error rate.

16



Problem 6: [16 Points]

a. Show that the maximum likelihood (ML) estimation of the mean for
a Gaussian is unbiased but the ML estimate of variance is biased (i.e.,
slightly wrong). Show how to correct this variance estimate so that it
is unbiased.

Solution: Sample mean is unbiased:

E[µ̂] = E[
1

n

n∑
i=1

xi]

=
1

n

n∑
i=1

E[xi]

=
1

n

n∑
i=1

µ

=
1

n
nµ

= µ

This document will show two ways to prove that the sample variance
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is biased. Proof 1:

E[
n∑
i=1

(xi − µ̂)2] = E[
n∑
i=1

(xi)
2]− nE[µ̂2]

= nE[(xi)
2]− 1

n
E[(

n∑
i=1

xi)
2]

= n(var(xi) + (E[xi])
2)− 1

n
E[(

n∑
i=1

xi)
2]

= nσ2 +
1

n
(nE[xi])

2)− 1

n
E[(

n∑
i=1

xi)
2]

= nσ2 − 1

n
[E[(

n∑
i=1

xi)
2]− (E[

n∑
i=1

xi])
2]

= nσ2 − 1

n
var(

n∑
i=1

xi)

= nσ2 − 1

n
nσ2

= (n− 1)σ2
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Proof 2:

E[ ˆσML
2] = E[

1

n

n∑
i=1

(xi − µ̂)2]

=
1

n

n∑
i=1

E[x2
i − 2xiµ̂+ µ̂2]

=
1

n

n∑
i=1

E[x2
i ]− 2µ̂E[

n∑
i=1

xi] +
n∑
i=1

E[µ̂2]

=
1

n
[n(σ2 + µ2)− 2nE[µ̂2] + nE[µ̂2]]

=
1

n
[nσ2 + nµ2 − nE[µ̂2]]

=
1

n
[nσ2 + nµ2 − n(fracσ2n+ µ2)]

=
n− 1

n
σ2

Therefore

unbiased: σ̂2 =
n

n− 1
ˆσML

2

=
1

n− 1

n∑
i=1

(xi − µ̂)2

b. For this part you’ll write a program with Matlab to explore the biased
and unbiased ML estimations of variance for a Gaussian distribution.
Find the data for this problem on the class webpage as ps2.mat. This
file contains n=5000 samples from a 1-dimensional Gaussian distribu-
tion.

Solution:

(a) Write a program to calculate the ML estimate of the mean, and
report the output.

(b) Write a program to calculate both the biased and unbiased ML
estimate of the variance of this distribution. For n=1 to 5000, plot
the biased and unbiased estimates of the variance of this Gaussian.
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This is as if you are being given these samples sequentially, and
each time you get a new sample you are asked to re-evaluate your
estimate of the variance. Give some interpretation of your plot.

The dataset was generated from a Gaussian normal distribution ∼
N(9, 2). The following Matlab code calculates the ML estimate of
the mean = 9, and produces Figure 6 indicating that the variance
= 2.0.

load ps2.mat;

data=ps2;

n = length(data)

%ML estimate of mean:

MLmean = sum(data) / n

MLvar = [];

unMLvar = [];

%ML estimate of variance:

for(i=2:n)

varML = 0;

tempMean = sum(data(1:i)) / i;

for (j=1:i)

varML = varML + (data(j) - tempMean)^2;

end

MLvar(i) = varML/i;

x = data(1:i);

unMLvar(i) = cov(data(1:i));

end

figure

plot(1:1:n, MLvar(1:n), ’g’, 1:1:n, unMLvar(1:n), ’r’)

Problem 7: [10 Points]

Suppose x and y are random variables. Their joint density, depicted below,
is constant in the shaded area and 0 elsewhere,

a. Let ω1 be the case when x ≤ 0, and ω2 be the case when x > 0.
Determine the a priori probabilities of the two classes P(ω1) and P(ω2).
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Figure 4: Though the two estimators have quite different estimates in the first
few samples, the bias looses significance as n is large, and both estimators
give the true variance of the data σ = 1.0.

Let y be the observation from which we infer whether ω1 or ω2 happens.
Find the likelihood functions, namely, the two conditional distributions
p(y|ω1) and p(y|ω2).

Solution:

By simply counting the number of unit squares in the shaded areas on
the left and right sides of the line x = 0; we can directly find out that
there are 8 unit squares on each side. Thus, the two cases are equally
likely, i.e. P(ω1) = P(ω2) = 0.5.

It’s also pretty straightforward to obtain the likelihood functions p(y|ω1)
and p(y|ω2) by counting the number of unit squares for different ranges
of y. We just need to be careful with normalizing them such that the
integral of the distribution 1. See Figure 6.

b. Find the decision rule that minimizes the probability of error, and
calculate what the probability of error is. Please note that there will
be ambiguities at decision boundaries, but how you classify when y falls
on the decision boundary doesn’t affect the probability of error.

Solution: As shown in (a), the a priori probabilites of ω1 and ω2 are
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Figure 5: The joint distribution of x and y.

identical. The minimum probability of error decision rule simply relies
on the comparison of the two likelihood function, In other words, it
becomes a ML decision rule.

The decision rule can be summarized as:

ω̂ =

{
ω1 if -2 < y ≤ -1 or 1 < y ≤ 2

ω2 if -1 < y ≤ 1

The probability of error is thus:

Pr(e) = Pr(ω̂ = ω1|ω2)Pr(ω1) + Pr(ω1|ω2)Pr(ω2)

=
1

2
Pr(−1 < y ≤ 1|ω1) +

1

2
Pr(−2 < y ≤ −1, 1 < y ≤ 2|ω2)

=
1

2
∗ 1

3
+

1

2
∗ 2

5
=

11

30
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Figure 6: Likelihood functions: (a) p(y| ω1) top, (b) p(y| ω2) bottom
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