
Some Mathematics for HMM

Dawei Shen

October 13th, 2008

This document is written to help you with HMM-related homework problems. All
notations used in this document are consistent with the ones used in [1].

1 Specification of an HMM model

To fully specify a hidden Markov model, you need five parameters:

1. N , the number of states in the model. We denote the set of all possible states as
S = {S1, S2, · · · , SN}, the state at time t as qt.

2. M , the number of distinct observation symbols per state, i.e., the discrete al-
phabet size of the output set. We denote the set of all possible output symbols
as V = {v1, v2, · · · , vM}, the output symbol at time t as Ot. The sequence of
observed symbols is denoted as O = O1O2 · · ·OT .

3. The state transition probability distribution A = {aij}, where aij = P [qt+1 =
Sj|qt = Si], 1 ≤ i, j ≤ N .

4. The observation symbol probability distribution in state j, B = {bj(k)}, where
bj(k) = p[Ot = vk|qt = Sj], 1 ≤ j ≤ N, 1 ≤ k ≤M .

5. The initial state distributions π = {πi},where πi = P [q1 = Si], 1 ≤ i ≤ N .

A compact representation of a model is λ = (A,B, π), where N,M are implicitly
implied by A and B. A learning problem is to adjust the model parameter λ, such
that P (O|λ) is maximized. Usually partial knowledge on the model is available or
reasonably assumed, e.g., the number of states N , or some transitions are impossible
(some aij’s are zeros).

We do not reiterate the three problems we frequently encounter in HMM here, but
emphasize that algorithms for solving these problems all depend heavily on the usage
of forward and backward variables.

1

2 Forward variables

Forward variables are defined as

αt(i) = P (O1O2 · · ·Ot, qt = Si|λ), (1)

i.e. the probability of the partial observation sequence, O1O2 · · ·Ot, (up to time t) and
state Si at time t, given the model λ. αt(i) can be obtained inductively as follows:

1. Initialization:
α1(i) = πibi(O1), 1 ≤ i ≤ N

2. Induction:

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(Ot+1), 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N. (2)

3 Backward variables

Backward variables are defined as

βt(i) = P (Ot+1Ot+2 · · ·OT |qt = Si, λ), (3)

i.e., the probability of the partial observation sequence from t + 1 to the end, given
state Si at time t and the model λ. βt(i) can also be obtained inductively as follows:

1. Initialization:
βT (i) = 1, 1 ≤ i ≤ N

2. Induction:

βt(i) =
N∑
j=1

aijbj(Ot+1)βt+1(j), 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N. (4)

The induction step may be less obvious than the one for forward variables. Note that

βt(i) = P (Ot+1Ot+2 · · ·OT |qt = Si, λ)

=
N∑
j=1

P (Ot+1Ot+2 · · ·OT , qt+1 = Sj|qt = Si, λ)

=
N∑
j=1

P (Ot+1Ot+2 · · ·OT |qt+1 = Sj, qt = Si, λ)P (qt+1 = Sj|qt = Si, λ)

=
N∑
j=1

P (Ot+2 · · ·OT |qt+1 = Sj, λ)︸ ︷︷ ︸
βt+1(j)

P (Ot+1|qt+1 = Sj, λ)︸ ︷︷ ︸
bj(Ot+1)

P (qt+1 = Sj|qt = Si, λ)︸ ︷︷ ︸
aij

(5)

2

The takeaway is that both forward and backward variables can be computed very
efficiently with O(N2T) calculations. The evaluation problem (the first one of three
HMM problems) can be solved by both forward and backward algorithms with either
P (O|λ) =

∑N
i=1 αT (i), or P (O|λ) =

∑N
i=1 πiβ1(i)bi(O1).

The algorithm for solving the state-tracking problem (the second one of the three HMM
problems) looks very similar except that the summation symbol at each step should be
replaced by a ‘max’ operation. In this document we won’t worry about them at all.

The iterative process of computing forward or backward variables is best graphically
presented using a structure called lattice or trellis, with a size of N × T .

4 Two more interesting variables

From forward and backward variables, it’s straightforward to calculate some other
useful variables easily. The first one is the probability of being in state Si at time t,
given the observation sequence O, and the model λ, denoted using γt(i):

γt(i) = P (qt = Si|O, λ) =
αt(i)βt(i)

P (O|λ)
(6)

The second one is ξt(i, j), the probability of being in state Si at time t, and state Sj
at time t+ 1, given the model and the observation sequence, i.e.,

ξt(i, j) = P (qt = Si, qt+1 = Sj|O, λ) =
αt(i)aijbj(Ot+1)βt+1(j)

P (O|λ)
(7)

They satisfy the relationship

γt(i) =
N∑
j=1

ξt(i, j). (8)

It is not difficult to figure out how forward and backward variables are used here to
compute γt(i) and ξt(i, j). We will skip the details here. Note that γt(i) and ξt(i, j)
are both conditioned on the observation sequence O, which looks very friendly and
promising, since that’s exactly what a learning problem embraces: given the observa-
tion sequence, we try learn what the best parameters are.

Next, we will show that Baum-Welch algorithm simply uses these two variables to
iteratively update the model until it converges to our satisfaction.

5 Baum-Welch

One key point to understand Baum-Welch algorithm, is to comprehend two interpre-
tations. If we sum γt(i) over the time index t from 1 to T − 1, we get a quantity

3

∑T−1
t=1 γt(i), which can be interpreted as the expected number of times that state Si is

visited, or the expected number of transitions made from state Si given the model pa-
rameters and the observation sequence O. Similarly, summation of ξt(i, j) over t from
1 to T −1 , i.e.,

∑T−1
t=1 ξt(i, j), can be interpreted as the expected number of transitions

from state Si to state Sj given the model parameters and the observation sequence O.

Then, the Baum-Welch algorithm adjusts model parameters using these expected num-
bers:

• π̄i = γ1(i);

• āij =
∑T−1

t=1 ξt(i, j)/
∑T−1

t=1 γt(i);

• b̄j(k) =
∑T

t=1,Ot=vk
γt(j)/

∑T
t=1 γt(j).

This adjustment is intuitively reasonable in that all probabilities of our model parame-
ters are updated by calculating corresponding ratios or proportions. After the update,
we obtain a set of new model parameters λ̄ = (Ā, B̄, π̄). We repeat the same process
again and again until changes in parameters are smaller than a predefined threshold.

Conceptually, Baum-Welch algorithm can be described as:

• You have a hidden Markov model, a sequence of observed symbols, and model
parameters that you believe are pretty good to explain your observations O.

• I am thinking, ‘alright, if your model parameters are correct, given the observed
sequence O, I should expect (1) the ratio of the number of transitions from state
Si to Sj divided by the number of transitions from state Si,and (2) the ratio of
the number of transitions from state Sj and the observed symbols are vk divided
by the number of transitions from state Sj to match model parameters you give
me, i.e. aij, and bj(k).’

How should I do it? I first construct two trellises to calculate forward and back-
ward variables αt(i)’s and βt(i)’s by using λ = (A,B, π). Then, I calculate γt(i)
and ξt(i, j), and use the Baum-Welch steps depicted above.

• The ratios I get don’t match well the model parameters you provided. I will
adjust the model parameters to be the ratios I calculated and tell you that my
parameters are better than yours in that P (O|λ̄) > P (O|λ). My model better
explains the data than your model does.

• Well, I am not satisfied with current parameters, I repeat the same process until
I am happy.

The question here is, how can I guarantee the updated model is better than the previous
one? This can be strictly proved and shown by using optimization theories, which is
of less interest here. Just trust the conclusion for now. Note that the algorithm only
converges to a local optima, which means the model parameters we obtain from the
Baum-Welch algorithm are not optimal in the global sense.

4

6 Scaling problem

Scaling is usually necessary in the implementation of Baum-Welch re-estimation pro-
cess. Consider the definition of forward variables in Eq.(1).

αt(i) = P (O1O2 · · ·Ot, qt = Si|λ)

=
∑

q1q2···qt−1

P (O1O2 · · ·Ot, qt = Si|q1q2 · · · qt−1, λ)P (q1q2 · · · qt−1|λ)

=
∑

q1q2···qt−1

[
t∏

s=1

bqs(Os)
t−1∏
s=1

aqsqs+1

]
. (9)

All aqsqs+1 and bqs(Os) terms are significantly less than one. Thus, the above summation
goes to zero very quickly, i.e., exponentially, as t goes sufficiently large. The precision of
the computation of forward variables will exceed the capability of computer processors.

The solution is that at each induction step of the forward algorithm, we need to scale
all at(i)’s appropriately. This scaling factor should only depend on the current time
index t, but be independent of the state i.

A commonly used scaling scheme for computing forward variables is

• Initialization

α̈1(i) = α1(i)

c1 =
1∑N

i=1 α̈1(i)

α̂1(i) = c1α̈1(i) (10)

• Induction

α̈t(i) =
N∑
j=1

α̂t−1(j)ajibi(Ot)

ct =
1∑N

i=1 α̈t(i)

α̂t(i) = ctα̈t(i) (11)

The coefficient ct is the scaling factor at each step, and ct only depends on the time
index t, not i. Also, the summation of modified forward variable is always 1, i.e.,∑N

i=1 α̂t(i) = 1. By induction, we can easily prove that

α̂t(i) =

(
t∏

τ=1

cτ

)
αt(i). (12)

5

If we use this modified forward algorithm to do the evaluation problem, at the last
step, we have

1 =
N∑
i=1

α̂T (i) =
N∑
i=1

(
T∏
t=1

ct

)
αT (i)

=

(
T∏
t=1

ct

)
N∑
i=1

αT (i) =

(
T∏
t=1

ct

)
P (O|λ) (13)

Let Ct =
∏t

τ=1 cτ , we have P (O|λ) = 1/CT . In logarithm, we have

log[P (O|λ)] = −
T∑
t=1

log ct. (14)

For backward variables, we use the same scale factors for each time t for β’s as were
used for α’s. More formally,

• Initialization

β̈T (i) = 1

β̂T (i) = cT β̈T (i) (15)

• Induction

β̈t(i) =
N∑
j=1

aijbj(Ot+1)β̂t+1(j)

β̂t(i) = ctβ̈t(i) (16)

We can also by induction prove that

β̂t(i) =

(
T∏
s=t

cs

)
βt(i) = Dtβt(i), (17)

where we use Dt to denote
∏T

s=t cs.

Now let’s consider how Baum-Welch algorithm should be changed using the modified

6

forward and backward variables:

āij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

=

∑T−1
t=1 αt(i)aijbj(Ot+1)βt+1(j)∑T−1

t=1 αt(i)βt(i)

=

∑T−1
t=1 α̂t(i)/Ct · aijbj(Ot+1) · β̂t+1(j)/Dt+1∑T−1

t=1 α̂t(i)/Ct · β̂t(i)/Dt

=

(∑T−1
t=1 α̂t(i) · aijbj(Ot+1) · β̂t+1(j)

)
/CT(∑T−1

t=1 α̂t(i) · β̂t(i)/ct
)
/CT

=

∑T−1
t=1 α̂t(i) · aijbj(Ot+1) · β̂t+1(j)∑T−1

t=1 α̂t(i) · β̂t(i)/ct
. (18)

Note that here we use the relationship Ct · Dt+1 =
∏N

i=1 ci = CT , and Ct · Dt =∏t
i=1 ci ·

∏N
i=t ci = CT · ct. Similarly, we have

b̄j(k) =

∑T
t=1,Ot=vk

γt(j)∑T
t=1 γt(j)

=

∑T
t=1,Ot=vk

α̂t(j) · β̂t(j)/ct∑T
t=1 α̂t(j) · β̂t(j)/ct

.

(19)

7 Multiple sequences of observation symbols

Sometimes, we record outputs from a system for multiple times. Each time we reset
the system to be in its initial state (the initial state can be random), and the clock for
recording time instants is also reset to start from 0. Why do we observe for multiple
times rather than observe once but for a very long time? This is because for some
models, such as ‘left-to-right’ models, the transient nature of the states within the
model only allow a small number of observations for any state (until a transition is
made to a successor state). Therefore, we can not have a single long observation
sequence to train the model. To have sufficient data to train the model, we have to
observe for multiple times, obtaining multiple sequences of output symbols.

How should the Baum-Welch algorithm be modified?

The idea stays the same: sum up the expected number of transitions of interest and
calculate ratios to replace model parameters.

Suppose we have L sequences of observed symbols, indexed by l. The observation length
is denoted using Tl. The observation sequences are denotes usingO = [O1, O2, · · · , OL].

7

The new learning problem becomes to adjust the parameters of the model λ to maximize

P (O|λ) =
L∏
l=1

P (Ol|λ) =
L∏
l=1

Pl, (20)

where Pl represents for P (Ol|λ), which can be calculated using the forward algorithm
as an evaluation problem.

Remember the two interesting variables we talked about above? They now have new
meanings and slightly different forms:

γlt(i) = P (qlt = Si|O, λ)

= P (qlt = Si|Ol, λ)

=
αlt(i)β

l
t(i)

P (Ol|λ)
= αlt(i)β

l
t(i)/Pl, (21)

and

ξlt(i, j) = P (qlt = Si, q
l
t+1 = Sj|O, λ)

= P (qlt = Si, q
l
t+1 = Sj|Ol, λ)

=
αlt(i)aijbj(O

l
t+1)β

l
t+1(j)

P (Ol|λ)
= αlt(i)aijbj(O

l
t+1)β

l
t+1(j)/Pl, (22)

Nothing has been significantly changed from the one-observation sequence case. Note
the following remarks:

• For each observation sequence, we need to calculate a different set of forward and
backward variables, which is why we put a subscript l on the shoulders of α’s
and β’s.

• The definitions of γlt(i)’s and ξlt(i, j)’s are conditioned on all observed sequences.

• In the Baum-Welch algorithm for the single observation case, we simply ignore
the term Pl since it will be canceled out when we take the ratio. However, as we
will show later, this term has to be maintained in the calculation since we can’t
cancel them out any more by taking the ratio. They are different for different
observation sequences.

Finally, count and divide!

The modified Baum-Welch algorithm can be listed as:

1. For each observed sequence, construct two trellises to calculate forward and back-
ward variables αlt(i)’s and βlt(i)’s.

8

2. Update!

āij =

∑L
l=1

∑Tl−1
t=1 ξlt(i, j)∑L

l=1

∑Tl−1
t=1 γlt(i)

=

∑L
l=1

∑Tl−1
t=1 αlt(i)aijbj(O

l
t+1)β

l
t+1(j)/Pl∑L

l=1

∑Tl−1
t=1 αlt(i)β

l
t+1(j)/Pl

b̄j(k) =

∑L
l=1

∑Tl

t=1,Ol
t=vk

γlt(i)∑L
l=1

∑Tl

t=1 γ
l
t(i)

=

∑L
l=1

∑Tl

t=1,Ol
t=vk

αlt(j)β
l
t(j)/Pl∑L

l=1

∑Tl

t=1 α
l
t(j)β

l
t(j)/Pl

(23)

Note that for a ‘left-to-right’ problem, estimating initial probabilities πi’s is not neces-
sary.

Certainly this algorithm won’t work in practice, since we need to do proper scaling.
That’s how it becomes simpler. The modified Baum-Welch algorithm with scaling:

1. For each observed sequence, construct two trellises to calculate modified forward
and backward variables α̂lt(i)’s and β̂lt(i)’s. For each l, we have a different set of
scaling factors clt’s.

2. Update!

āij =

∑L
l=1

∑Tl−1
t=1 α̂lt(i)aijbj(O

l
t+1)β̂

l
t+1(j)/(PlCl

T)∑L
l=1

∑Tl−1
t=1 α̂lt(i)β̂

l
t(i)/(c

l
tPlCl

T)

=

∑L
l=1

∑Tl−1
t=1 α̂lt(i)aijbj(O

l
t+1)β̂

l
t+1(j)∑L

l=1

∑Tl−1
t=1 α̂lt(i)β̂

l
t(i)/c

l
t

b̄j(k) =

∑L
l=1

∑Tl

t=1,Ol
t=vk

α̂lt(j)β̂
l
t(j)/c

l
t∑L

l=1

∑Tl

t=1 α̂
l
t(j)β̂

l
t(j)/c

l
t

(24)

Note that here we use the fact that PlCl
T = 1. By using scaling, we happily find that

all Pl’s terms are cancelled out! The resulting format looks much cleaner!

You have got everything you need for your homework now. Happy coding!

References

[1] Lawrence R. Rabiner, ‘A Tutorial on Hidden Markov Models and Selected Ap-
plications in Speech Recognition,’ Proceedings of the IEEE, Vol. 77, No. 2, pp.
257-286, February, 1989

9

