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1. The Problem 
The Restaurant Game is part of a project to develop an AI system that can play a video 

game with a human or another AI just by using annotated recordings of humans playing 
the game as examples. The Restaurant Game is a simple two-player restaurant simulation 
in which character are instructed to act out a typical interaction between a customer and a 
waitress. We have collected about 10,000 recordings of humans playing the games, which 
consist of the typed dialog and events they perform within the game. 

 

 
The goal is for the AI to interpret the game it is currently experiencing in terms of the 

recorded, annotated games and choose actions appropriately. In order to accomplish this, 
we are seeking to annotate the game logs with additional information. We want to cluster 



and annotate words, phrases and dialog lines. Furthermore, we want to group events and 
dialog (that may have other events interleaved) into sequences that correspond to higher-
level actions. For example, the waitress asking the bartender for beer and bringing it to the 
customer and putting it down may all be grouped into the sequence “waitress serves drink.”

As part of my Master’s thesis I am exploring ways to automatically find and cluster 
sequences, but one of the challenges is dealing with the variety of dialog encountered. 
Therefore, I also want to cluster dialog lines, words and phrases in order to decrease the 
variation to make find and clustering sequences more tractable. This project is an exploration 
of one possible method of clustering dialog lines and words (and hopefully later extend to 
sequences as well) simultaneously in interacting layers.

2. Proposed Solution
a. Simultaneous Layered Clustering

Since the goals is to cluster words, dialog and sequences and all three are related 
because the contain or are contained by one another I proposed to cluster all three sets 
simultaneously, using the current clustering of each layer to influences the future clustering 
of other layers at each iteration. The motivation being that if two dialog lines mean the 
same thing, but one uses several synonyms in place of the words contained in the other 
then it can be hard to automatically determine that they are similar, unless they appear in 
similar contexts. But by clustering the words they contain, and comparing them in terms 
of those clusters, it is more apparent. Similarly, if two similar words are used in different 
phrases that mean the same thing, clustering those phrases can help to make the similarity 
of the words more apparent. Each layer’s similarity is influenced by the similarities of the 
layers above and below it, which can be represented by the clustering of those layers.

i.  Layers

For this exploration I sought only to focus on the clustering of words and dialog 
lines and used the following layer: letters, words, dialog lines and sequences. I kept the 
letters and dialog lines fixed, and only clustered on the middle two layers, but the outer 
layers’ fixed clustering was factored into similarity measurements.

ii. Similarity Measurements

Within each layer I computed the similarity between each pair of elements in the 
layer as a weighted sum of the following three similarity components, normalized to be 
between 0 and 1. This algorithm is designed to work with soft cluster assignments so 
the current similarity of elements in all layers is estimated as the current cluster overlap 
of those elements, that is the dot-product of their normalized cluster assignments.

1. Sequence Similarity (base on lower layer)



Sequence similarity is a measure of how similar the sequences of elements 
from the layer below that compose these two elements are. It is computed as 
the levenshtein distance between the two sequences (the number of insertions, 
deletes and substitutions needed to get from one to the other), where substitution 
is weighted by the cluster overlap of the two lower-layer elements being 
swapped. 

2. Context Similarity (based on same layer)

Context similarity is a measure of how similar the context the elements 
appear in is. It is based on the cluster overlap of siblings, elements that 
appear nearby a given element in elements of the higher layer. For example, 
in the line “there are two dogs,” if we are looking at neighbors only one space 
away, “two” and “there” are both neighbors of “are.” First n-gram distributions are 
computed for each element by looking at all the siblings that occur within a given 
range of the element in any of its parents and combing their clusters according 
to where they occur in relation to it. This gives a vector of cluster distributions 
corresponding to positions near the elements, these are dotted together after 
being normalized to produce context similarity.

3. Parent Similarity (based on higher layer)

Parent similarity is a measure of how similar the elements containing 
the particular elements are. Once again we add and normalize the cluster 
distributions and then compute the overlap, but we only compute using the 
parents that don’t contain both of the elements because that would be more a 
measure of how much the words co-occurr rather than how similar their contexts 
are.

 
All these similarities are combined into a single similarity score and after the 

similarities have been computed for all pairs they are fed into a clustering algorithm 
that can use pair-wise similarities instead of a feature space and then the cluster 
distributions are updated and the process is repeated.



3. Implementation
a. Feature Extraction

The data set I used was 100 game logs annotated with sequence information and dialog 
information. I used the sequence labels to create the sequence elements and as fixed 
values for the cluster distributions in the sequence layer. The dialog labels were used as 
the gold standard for dialog lines. I extracted the sequences and gold standard clusters 
using a Perl script. This resulted in about 5142 sequences (2106 unique) in 28 clusters, 
4280 dialog lines (2944 unique) in 309 clusters, and 15935 words (1862 unique). For most 
of the time I was working on tuning the algorithm’s parameters so I worked with a smaller 
set of just 10 games which resulted in 519 sequences (242 unique) in 27 clusters, 597 
dialog lines (452 unique) in 115 clusters and 2328 words (543 unique).

b.  Algorithm
The extracted data was fed my C++ algorithm and run with varying parameters the 

pseudo-code is as follows:
layers <- LoadData
 
for i from 1 to NUM_ITERS

similiarities <- layers.computeSims()
cluster_distributions <- cluster(similarities)
layers.cds <- prune(cluster_distributions)

 
layers.output_final_clusters()
 

The algorithm was very computationally intensive and I spent a lot of time optimizing it. 
One thing I experimented with was pruning the similarities that were very small so that the 
clustering algorithm wouldn’t consider those pairs. Another thing I experimented with and 



left in was pruning the cluster distributions which I left in as seen above so that for each 
element I only included the clusters that had an above average distribution. This greatly 
improved computation time since each of the similarities required dot producting cluster 
distributions. I had originally wanted to test multiple internal clustering algorithms, but had 
issues with spectral clustering and k-modes but would still like to do it in the future. Instead 
the clustering algorithm I used was affinity propagation, which does not require the number 
of clusters to be specified ahead of time and which only needs pairs of similarities.

c. Parameters
There were many parameters in my algorithm that I spent a lot of time tuning described 

in more detail below, though I would like to evaluate them further on larger data-sets. I 
would like to explore all these more, especially tuning each one separately for each layer.

i. N-gram size

The distance in each direction around each element to look for siblings when 
computing context similarity. Best value so far has been 2.

ii.Cluster threshold

The percentage of the average cluster distribution a cluster must exceed to be kept 
in an elements cluster distribution. Best value 1.0.

iii. Lambda

The damping factor used in affinity propagation, controls how quickly it converges. 
Best value 0.9.

iv. Number of iterations

The number of times to perform the similarity computation - clustering cycle. Best 
value 3. (I would like to try updating similarities and clustering simultaneously in the 
future)

v.  Preference

The self-similarity of the elements, a parameter for affinity propagation that 
influences how likely the element is to be a cluster exemplar. I use the average of all 
the other similarities.

vi. Similarity weights

The relative weights of each of the similarity components, I did not experiment wiht 
this nearly as much as I would have liked. Best so far: 0.2 Sequence similarity, 0.6 
Context similarity, 0.2 Parent similarity.

 



4. Experimentation, Testing and Evaluation
a. Evaluation of Performance

i. Naive quantitative score
I did not have time to finish coming up with gold standard clusters for words so I 

started by only evaluating the dialog clusters.
I wanted to try to quantitatively evaluate the clustering method and compare it to 

using just affinity propagation by itself. But the difference in the number of clusters and 
the sparsity of the data made it difficult to evaluate. The naive method I came up with 
was to sum up over all the pairs of elements the pairs that were int the same cluster 
in both clusterings and those that were in different clusterings in both (the one being 
tested and the gold standard) and divide by the total number of pairs. I found however, 
that although my method scored slightly better than pure affinity propagation, putting 
each element in its own cluster so I discarded this method of evaluation.

ii.Qualitative evaluation
Instead of a quantitative measurement I came up with a qualitative way of evaluating 

the clusterings. I computed the cluster overlap matrices between the found clusters 
and the gold standard clusters, normalized by the size of the clusters and used a 
matlab script to sort the rows and columns to maximize the weight along the diagonal 
and plotted it as a colormap. The more weight along the diagonal the better the found 
clusters because it means there is more correspondence between the found clusters 
and the gold standard clusters.

5. Results
I would have liked to evaluate my algorithm on the full dataset, but as of yet it has not 

completed because it is very computationally intense. However, below are the qualitative 
results for pure affinity propagation and my layered clustering algorithm.





6. Conclusions
So far it is still too early to decide for sure whether this method is worthwhile or not, 

because I have not yet found a good method for evaluating and it needs to be run on larger 
datasets. I may try to find another data-set to use as a proof of concept that would be larger, 
but less sparse and less computationally intensive.

7. Future Work
I would like to evaluate the method further, using more data, and better evaluation 

methods. I would like to experiment with the parameters more and try tuning them on a per-



level basis. I would like to experiment with adding another level. I would like to try updating the 
similarities in real-time while the clustering algorithm is running so the two influence each other 
simultaneously instead of iteratively.


