
How to Estimate and Interpret Various Effect Sizes

Tammi Vacha-Haase
Colorado State University

Bruce Thompson
Texas A&M University and Baylor College of Medicine

The present article presents a tutorial on how to estimate and interpret various effect sizes. The 5th edition
of the Publication Manual of the American Psychological Association (2001) described the failure to
report effect sizes as a “defect” (p. 5), and 23 journals have published author guidelines requiring effect
size reporting. Although dozens of effect size statistics have been available for some time, many
researchers were trained at a time when effect sizes were not emphasized, or perhaps even taught.
Consequently, some readers may appreciate a review of how to estimate and interpret various effect sizes.
In addition to the tutorial, the authors recommend effect size interpretations that emphasize direct and
explicit comparisons of effects in a new study with those reported in the prior related literature, with a
focus on evaluating result replicability.

For decades, statistical significance has been the norm for eval-
uating results. In fact, little change has occurred since Carver
(1993) noted: “A quick perusal of research journals, educational
and psychological statistic textbooks, and doctoral dissertations
will confirm that tests of statistical significance continue to dom-
inate the interpretation of quantitative data in social science re-
search” (p. 294).

Although statistical significance “evaluates the probability or
likelihood of the sample results, given the sample size, and assum-
ing that the sample came from a population in which the null
hypothesis is exactly true” (Thompson, 2003, p. 7), statistical
testing cannot evaluate result importance. Cohen (1994) observed
that the statistical significance test “does not tell us what we want
to know, and we so much want to know what we want to know
that, out of desperation, we nevertheless believe that it does!” (p.
997). Some unlikely events are trivial and, conversely, some likely
events are nevertheless quite important (Thompson, 1996).

However, the field of psychology appears to be moving in the
direction of placing more emphasis on effect sizes, although
progress has tended to be incremental (Fidler et al., in press). For
example, the 5th edition of the American Psychological Associa-
tion’s (APA, 2001) Publication Manual emphasized that:

it is almost always necessary to include some index of effect size or
strength of relationship. . . . The general principle to be followed . . .
is to provide the reader not only with information about statistical
significance but also with enough information to assess the magnitude
of the observed effect or relationship. (pp. 25–26)

The Manual also declared the failure to report effect sizes to be a
“defect” (p. 5).

Today, given evidence that the Manual itself has only a limited
impact on reporting practices (Finch, Thomason, & Cumming,
2002; Vacha-Haase, Nilsson, Reetz, Lance, & Thompson, 2000),
editors of 23 journals have supplemented the Manual by publish-
ing author guidelines explicitly requiring authors to report effect
sizes (cf. Harris, 2003; Snyder, 2000; Trusty, Thompson, & Pet-
rocelli, 2004). These include the flagship journals of two profes-
sional associations (the American Counseling Association and the
Council for Exceptional Children), both with circulations greater
than 55,000. As Fidler (2002) recently observed, “Of the major
American associations, only all the journals of the American
Educational Research Association have remained silent on all
these issues” (p. 754).

However, as is often the case throughout statistics, there is not
universal agreement regarding the definition of terms. Some peo-
ple limit the term effect size to refer to a specific statistic (e.g.,
Cohen’s d ), others to a single class of statistics (e.g., standardized
differences), or still others to a complete universe of statistics (i.e.,
all 40� possible effect sizes).

For the purposes of this article, the term effect size is used most
broadly to refer to any statistic that quantifies the degree to which
sample results diverge from the expectations (e.g., no difference in
group medians, no relationship between two variables) specified in
the null hypothesis (Cohen, 1994; Thompson, 2002b, 2003). Effect
sizes can be used to inform judgment regarding the “practical
significance” of study results (Kirk, 1996).

If sample results match the expectations specified by the null
hypothesis, the effect size is zero. For example, if the null is that
the population postintervention medians of the experimental and
the control groups are equal, and the two sample medians are 60.2
and 60.2, the effect size is zero. However, if a null hypothesis
specifies that the population standard deviations of depression
scores in three groups will be equal, and the sample standard
deviations are 5.0, 5.5, and 9.0, the effect size is not zero. Greater
divergence in sample results from the expectations specified in the
null hypothesis regarding population parameters results in effect
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sizes larger in magnitude. Huberty (2002) provided a history of the
numerous effect size choices.

Like other statistics, effect sizes are on the average for the data
set as a whole. For example, if a multiple correlation squared
coefficient (R2) is .50, this does not necessarily mean that every
participant’s Y score was predicted equally well. Indeed, there may
be subsets of participants for whom the effect size would be larger
and subsets for whom the effect size may be quite small. These
dynamics suggest the importance of exploring data dynamics more
deeply than merely computing summary statistics.

Purpose of the Article

The purpose of the present article was to provide a tutorial on
how to calculate effect sizes. First, the three classes of effect size
are discussed, providing guidance for the computation of each.
Second, three guidelines for reporting effect sizes are suggested.
Third, suggestions for interpreting effect sizes in applied research
are presented. Finally, a heuristic example of an applied interpre-
tation problem is presented.

Space considerations preclude coverage of every available
choice, and we focus on the most commonly encountered effect
sizes (Huberty, 2002; Kirk, 1996). Readers seeking more detail
may consult Snyder and Lawson (1993) or Rosenthal (1994).
Contemporary treatments are provided by Kirk (in press), Hill and
Thompson (in press), and Thompson (in press). The book, Beyond
Significance Testing, by Kline (2004) is especially contemporary
and comprehensive.

Three Major Classes of Effect Sizes

Various frameworks for classifying the several dozen effect size
statistics have been presented (cf. Kirk, 1996; Thompson, 2002a).
Here, three major categories are discussed: (a) standardized dif-
ferences effect sizes, (b) variance-accounted-for effect sizes, and
(c) “corrected” effect sizes. Corrected effect sizes attempt to better
estimate either population or future sample effects by removing
from the results the estimated influences of sample idiosyncrasies.

Standardized differences. In medicine, there are natural, uni-
versally accepted metrics with which to measure intervention
effects. For example, cholesterol is universally measured in milli-
grams per deciliter. Studies of medications given to heart attack
patients routinely compare number of deaths of the placebo group
versus deaths in the postintervention experimental group. Unstand-
ardized differences (e.g., 10 fewer deaths per 100 treated patients)
in such studies are reasonable effect estimates, and indeed any
other choices might be deemed thoughtless.

In psychology, however, there are no universal metrics with
which to measure abstract constructs such as self-concept or IQ,
and the metrics of measures are arbitrarily fixed by different test
authors. Furthermore, different measures of the same construct
may have different metrics (e.g., one IQ measure has a standard
deviation of 15, whereas another has a standard deviation of 16,
and a new measure might be developed with a standard deviation
of 10).

To compare effects across an entire literature in which different
researchers have used different measures of the outcome variable,
researchers must resort to using standardized differences so that

the effect sizes may be compared “apples to apples.” Standardized
differences are computed by the generic formula:

�ME � MC�/SD , (1)

where ME is the posttest sample mean of the experimental group,
MC is the posttest sample mean of the control group, and SD is
some estimate of the population standard deviation. Effect sizes
may also be computed using sample medians or other sample
central tendency statistics, but sample group means are used most
commonly.

Standardized differences express effect size in standard devia-
tion units. Thus, if the effect is .20, the treatment group mean is
one fifth of a standard deviation higher than the control group
mean. If the outcome scores in both groups are normally distrib-
uted, the standardized difference can be readily expressed in terms
of percentage of group overlap. For example, if 1,000 participants
are in both groups, and the standardized difference is .20, then
85%, or 1,700, of the participants in the two groups overlap as
regards their outcome scores, whereas 300 have scores outside the
overlap of the two distributions (see Howell, 2002, p. 228).

The standard deviation used in the standardization can be esti-
mated in different ways, and of course, the choice can make a large
difference. For example, as part of his articulation of meta-analytic
methods, Glass (1976) proposed delta, which divides the sample
mean difference by the sample standard deviation of the control
group. Alternatively, Cohen’s (1969) d invokes a standard devia-
tion estimate that “pools” or averages the outcome variable’s
sample standard deviations across both the intervention and the
control group.

In an intervention study of the effects of a year of taking an
herbal supplement on measured IQ, the intervention group (nE �
50) might enjoy an advantage on the average of 3.0 IQ points
([ME � 103] � [MC � 100] � 3.0) over the control group (nC �
50). For this situation in which group sizes are equal (i.e., both
ns � 50), we estimate effect using the pooled standard deviation
across the two groups by pooling the variances (i.e., SD2):

d � �ME � MC�/�SQRT��SDE
2 � SDC

2 �/ 2	�. (2)

If the sample standard deviations of the outcome variable scores
for the experimental and control groups were SDE � 19.0 and
SDC � 15.0, respectively, for these data, we obtain,

d � �103 � 100�/�SQRT��19.02 � 15.02�/ 2	�

� 3.0/�SQRT��361.0 � 225.0�/ 2	�

� 3.0/�SQRT�586.0/ 2	�

� 3.0/�SQRT�293.0	�

� 3.0/17.117

� .175. (3)

Delta is computed as (ME � MC)/SDC, and for the same data, delta
would be 0.200 (3.0/15.0 � 0.200).

A comparison of these two from among the several standardized
difference choices makes clear the importance of thoughtful se-
lection of effect indices. There are not always definitively correct
single right answers in statistics. As Huberty and Morris (1988, p.
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573) emphasized: “As in all statistical inference, subjective judg-
ment cannot be avoided. Neither can reasonableness!”

In this example, the pooled estimate (SD � 17.117) has the
appeal that the estimate is based on a sample size of 100 rather
than of 50. However, if one believes that the population standard
deviation (�) is 15.0 or 16.0, the finding that SDE is 19.0 suggests
the possibility that the intervention impacted both the posttest
sample mean and the posttest sample standard deviation of scores
in the intervention group. Therefore, on balance, the researcher
may reasonably prefer the use of delta over d for these data
because the control group’s standard deviation could not have been
impacted by the intervention.

Researchers will generally prefer delta when the sample size in
the control group is very large so that relatively little precision in
estimating the standard deviation is gained by pooling both sam-
ples. Researchers also may prefer delta when the intervention and
control conditions themselves are hugely different, because pool-
ing, again, makes less sense in this context (Rosenthal, 1994). For
example, it may be reasonable to pool across interventions involv-
ing 10 weekly therapy sessions of 50 versus 60 min in length, but
it may not be reasonable to pool across 10 weekly sessions versus
2 years of daily therapy. Of course, the selection makes less
difference as the groups’ standard deviations are more similar.

This discussion also reinforces the notion of why standardizing
can be important. An unstandardized mean difference of 3.0 in the
prior example translated into a standardized difference effect size
of .175 or .200 IQ standard deviations. If the 3.0 mean difference
had instead involved measurement of body temperatures in Fahr-
enheit, perhaps with a standard deviation of 0.2, the standardized
difference effect becomes 15.0 (i.e., 3.0/0.2), reflecting the fact
that an increase of 3 IQ points indicates that the intervention group
in the first example is perhaps somewhat smarter, but the inter-
vention group in the health example has become on the average
very ill indeed. Therefore, researchers must attend to the nature of
the outcome variable (i.e., whether higher or lower scores are
desired) as well as the mean difference in relation to the standard
deviation.

Variance-accounted-for indices. In statistics, the general lin-
ear model (GLM) is the idea that all commonly used analyses are
part of a single analytic family (Cohen, 1968; Thompson, 1991,
2000). All GLM analyses (e.g., t tests, analysis of variance
[ANOVA], analysis of covariance [ANCOVA], regression, factor
analysis, descriptive discriminant analysis) are correlational and
explicitly or implicitly apply weights (e.g., beta weights, factor
pattern coefficients) to measured variables to obtain scores on
composite or latent variables (e.g., regression or ANOVA Ŷ scores,
factor scores). One implication of the GLM is that an r2-type effect
size can be computed in all the commonly used analyses.

For example, in bivariate correlation or in regression analyses,
the sum of squares (SOS) of the Ŷ scores can be computed. This
is synonymously called the “SOSEXPLAINED,” “SOSMODEL,”
“SOSREGRESSION,” or “SOSWITHIN.” In fact, to confuse every-
body, different procedures within a given statistics package often
name these synonymous results with different labels.

The SOS of the criterion variable quantifies the amount and the
origins of information available, as regards the criterion variable.
For example, for a given data set, if SOSY (also called SOSTOTAL)
is 50.0, there is more information regarding individual differences
on the outcome variable than if SOSY had been 10.0. We can

partition this SOS in various ways to explore the origins of this
information. First, we can partition the information on the basis of
who generated the information. “Wendy” may have generated 30.0
of the 50 units of information about individual differences, “De-
borah” 15.0 units, and “Susan” 5.0 units.

Second, we can also partition this information on the basis of
how well other variables explain or predict these individual dif-
ferences. For example, in regression, if this SOS is 50.0, and the
SOSEXPLAINED is 10.0, the R2 is .20 (10.0/50.0), or 20%. With
knowledge of the scores on the predictor variables, we can explain
20% of the individual differences on the criterion variable.

Similarly, given the GLM, if in either an ANOVA or a t test the
SOSY is 50.0 and the SOSEXPLAINED is 10.0, the variance-
accounted-for effect size is 0.20 (10.0/50.0 � 0.20), or 20%. Here,
with knowledge of group membership on the independent variable,
we can explain 20% of the individual differences on the criterion
variable. However, unlike R2, which only measures linear relation-
ship (unless predictor variables are raised to exponential powers),
the ANOVA variance-accounted-for effect size is sensitive to
various kinds of relationship, including nonlinear relationship.
Therefore, to distinguish this ANOVA effect index from the R2,
the ANOVA effect is named the correlation ratio, or eta squared
(�2).

Given the GLM, analogous variance-accounted-for effect sizes
can be computed for multivariate analyses. Multivariate eta
squared can be computed for multivariate analysis of variance
(MANOVA) and descriptive discriminant analysis. The squared
canonical correlation coefficient, RC

2 , can be computed for canon-
ical correlation analysis.

Analogous variance-accounted-for effect sizes can also be com-
puted for categorical data such as contingency tables (e.g., counts
of heart attacks or not across taking aspirin daily vs. a placebo).
However, variance-accounted-for effect sizes for such data are
difficult to interpret with respect to practical significance. For
example, the r2 effect for aspirin on heart attack is only .0011, even
though people taking aspirin daily have 4% fewer heart attacks
(Rosenthal, 1994). Therefore, for categorical data, effect sizes such
as the binomial effect size display or odds ratios are recommended.
Fliess (1994) provided a summary of the available choices.

Corrected effect sizes. All classical statistical analyses (e.g.,
t tests, ANOVA, descriptive discriminant analysis) are least
squares methods that maximize the sample SOSEXPLAINED and
minimize the sample SOSUNEXPLAINED. This has the concurrent
impact of maximizing the sample effect size.

The problem is that parts of the SOSY and of the SOSEXPLAINED

are unique to a given sample and do not exist in the population and
will not exist in the same form in other future samples. In other
words, in essence, every sample has its own “personality” or
uniqueness (i.e., sampling error variance), and some samples have
more sampling error variance than others. And when the SOSY is
50.0, and the SOSEXPLAINED is 10.0, the classical analysis does not
consider how much of the 50.0 and of the 10.0 are unique to a
particular sample, and thus does not consider how much of the
effect is real or replicable. Therefore, the effect size for a sample
tends to overestimate the effect size both in the population and in
future samples (Snyder & Lawson, 1993).

We can adjust or correct the sample effect size if we can
successfully estimate the amount of sampling error variance in the
sample data, and then remove this influence from the effect size.
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Only if we collect data from the entire population (or the popula-
tion effect size is perfect) will the sample effect size not be inflated
by sampling error.

We know that three design elements cause sampling error. More
sampling error variance (and thus more positively biased sample
effect estimates) occurs when (a) the sample size is smaller, (b) the
number of measured variables is larger, and (c) the population
effect size is smaller. Because the third element is unknown, or the
study would not be done in the first place, we use the sample effect
size as the best estimate of the unknown population parameter.
Numerous correction formulae can be used to adjust effect esti-
mates using these three design features.

In regression, the Ezekiel (1930) formula is often used. The
corrected or “adjusted” multiple correlation squared coefficient,
R2, can be computed as:

1 � ��n � 1]/[n � v � 1	� � �1 � R2�, (4)

where n is the sample size, v is the number of predictor variables,
and R2 is the uncorrected squared multiple correlation coefficient.
The formula can be equivalently expressed as:

R2 � ��1 � R2	 � �v/n � v � 1�	}. (5)

The Appendix presents some corrections for three illustrative
values of the sample R2 (i.e., .95, .50, and .05), three sample sizes
(i.e., 120, 30, and 5), and three numbers of predictor variables (i.e.,
12, 6, and 1). Note that the difference between the R2 and the
“adjusted R2” (R2*), which is called shrinkage, is small when the
R2 is large, even when the sample size is quite small (e.g., 5) or the
number of predictors is fairly large (e.g., 6 for the sample size of 30).

Note also that R2* can be computed to be negative even though
this statistic is a squared variance-accounted-for result. Of course,
such a result, although mathematically possible, indicates serious
design problems. This result is analogous to obtaining an estimated
reliability coefficient, such as Cronbach’s alpha, that is negative
(e.g., � � �.7, or even � � �7.5), even though alpha is also
inherently in a squared variance-accounted-for metric (Thompson,
2003).

The negative R2* suggests fundamental problems. If R2* equals
a negative number, this means that with knowledge of the predictor
variable scores, one believes he or she can explain less than zero
of the variability of the outcome variable scores, or less than the
zero variability that he or she could explain using no predictors.

In the ANOVA case, the analogous omega squared can be
computed using the formula from Hays (1981, p. 349):

�SOSBETWEEN � ��k � 1� � MSWITHIN	�/�SOSTOTAL � MSWITHIN�,

(6)

where SOSTOTAL is the SOS of the dependent variable, SOSBE-

TWEEN is the SOS between, MSWITHIN is the mean square within,
and k is the number of groups. For example, if n was 31, SOSY �
100.0, there were k � 7 groups, and the correlation ratio (�2) was
.50, or 50%, the ANOVA summary table would be:

SOS df MS F �2

50.0 6 8.33 4.00 0.50
50.0 24 2.08

100.0 30

The omega squared would equal:

�50.0 � �6 � 2.08	�/�100.0 � 2.08�

�50.0 � 12.5�/102.08

37.5/102.08 � 0.367. (7)

So, from the original �2 of 0.50, or 50%, the shrunken effect size
(�2) would be 0.367, or 36.7%, with a shrinkage of 0.133 (i.e.,
50.0% � 36.7% � 13.3%), or a decrease of 26.5% (i.e., 13.3%/
50.0% � 26.5%) in the original, uncorrected estimate.

Correction formulae also are available for multivariate analyses.
For example, in MANOVA and descriptive discriminant analysis,
a multivariate omega squared from Tatsuoka (1973) can be used.
And some simulation research suggests that the Ezekiel (1930)
correction formula also may be used with the squared canonical
correlation coefficient (Thompson, 1990).

Should corrected effect sizes be preferred over uncorrected
estimates? Because corrected estimates are generally more accu-
rate estimates of population effects or effects likely to be encoun-
tered in replication (Snyder & Lawson, 1993), a reasonable argu-
ment can be made that corrected estimates should be used more
often than their uncorrected counterparts. But it will make less
difference which class of estimates is used if (a) sample size is
very large, (b) the number of variables is very small, and (c) the
unknown population effect size is in reality quite large. Because it
is not entirely clear when a sample becomes large, or the number
of variables becomes small, the prudent researcher probably does
draw more often from the well of corrected effects than from the
well of uncorrected effect sizes.

Effect Sizes in SPSS

Some brief comment on obtaining effect sizes in each of the
three classes (i.e., standardized differences, variance-accounted-
for, and corrected or adjusted) using computer software is war-
ranted. Discussion is limited to the SPSS package. Of course, the
features of SPSS are continually being modified, so these com-
ments may be time bound.

SPSS does not yield standardized difference effect sizes (e.g., d,
delta). However, the computations are fairly simple and can be
implemented using either a spreadsheet program or a calculator,
using the formulas presented earlier.

In regression, SPSS always outputs both the uncorrected and the
corrected R2. If one has a bivariate problem (i.e., Pearson r), the
corrected value can be obtained by running the analysis using the
REGRESSION procedure rather than the CORRELATION proce-
dure. In ANOVA, SPSS will provide eta squared upon request.

Table 1 presents some common analytic methods and displays
how effect sizes can be obtained for each. Again, for more detail
on these different estimates, the reader is referred to Snyder and
Lawson (1993), Rosenthal (1994), Hill and Thompson (in press),
Kirk (in press), Thompson (in press), or Kline’s (2004) book,
Beyond Significance Testing.

Three Reporting Rules

Here we recommend three guidelines for reporting effect sizes.
First, explicitly say exactly what effect sizes are being reported. As
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noted previously, there are dozens of effect size choices. The
reader must know specifically which effect is being reported in
order to evaluate the effect. However, empirical studies of report-
ing practices indicate that in a surprising number of studies,
authors report effects without clearly indicating exactly which
effect is being presented (Kieffer, Reese, & Thompson, 2001;
Vacha-Haase et al., 2000).

Only reporting that an effect size is .5 without indicating which
effect size is being presented is inherently ambiguous. A Cohen’s
d of .5 is very different than an r2 of .5, just as an r of .50 is in a
different metric than an r2 of .50. The reader cannot intelligently
evaluate the effect size if the estimate being reported is not clearly
stated.

Specificity also allows readers to use conversion formulae to
reexpress effects in new metrics. If some previous authors reported
Pearson r values, and other authors reported Cohen’s d values, a
researcher could reexpress all the effect sizes as rs, or as ds, so that
the summary is completely apples-to-apples.

For example, an r can be converted to a d using Friedman’s
(1968, p. 246) Formula 6:

d � �2�r	�/��1 � r2	5�. (8)

Conversely, a Cohen’s d can be converted to an r using Cohen’s
(1988, p. 23) approximation Formula 2.2.6:

r � d/��d2 � 4	5�. (9)

For example, if d � .5, r would equal approximately:

� .5/��.52 � 4	 .5�

� .5/��.25 � 4	 .5�

� .5/�4.25.5�

� .5/ 2.061552

� 0.242. (10)

When total sample size is small or group sizes are quite disparate,
it is advisable to use a slightly more complicated but more precise
conversion formula provided by Aaron, Kromrey, and Ferron
(1998).

For heuristic purposes, let us also convert d to r using the more
precise formula, and assuming both groups have a sample size of
50. Now r is estimated to be:

� .5/�.52 � ��1002 � 2�100�/�50 � 50�	 .5�

� .5/�.25 � ��1002 � 2�100�/�50 � 50�	 .5�

� .5/�.25 � ��10,000 � 200�/ 2,500	 .5�

� .5/�.25 � �9,800/ 2,500	 .5�

� .5/�.25 � �3.92	 .5�

� .5/�.25 � 1.980�

� .5/ 2.230

� .224. (11)

Note that the approximation yields a result (.242) close to the more
precise conversion (.224). Of course, once the r is derived, a
variance-accounted-for effect size, if desired, can be obtained
simply by squaring r.

Second, interpret effect sizes by taking into consideration both
their assumptions and their limitations. As with other statistics,
when analytic assumptions are violated, results are compromised.
If distribution or homogeneity assumptions are severely violated, F
and p calculated values may be compromised, but so too will be
the effect estimates. However, some Monte Carlo research sug-
gests that some newer effect indices, such as group overlap I
indices, may be more robust to the violations of methodological
assumptions (cf. Hess, Olejnik, & Huberty, 2001; Huberty &
Holmes, 1983; Huberty & Lowman, 2000). Thus, when method-
ological assumptions are not well met, the I effect sizes may be
preferred.

It is also important to compare effect sizes across studies, taking
into account design differences. For example, as Olejnik and
Algina (2000) pointed out, the eta squared in a fixed-effects

Table 1
Strategies for Obtaining Effect Sizes for Selected SPSS Analyses

Analysis Possible strategy

Contingency table
(r or odds ratio)

Run the CROSSTABS procedure and
select the desired effect from the
STATISTICS submenu.

Independent t test
(d, �2, or �2)

Compute a Cohen’s d by hand. Or,
run the analysis as a one-way
ANOVA using the GLM program;
click on the OPTION requesting an
effect size to obtain �2. Use the
Hay’s correction formula (�2) if an
adjusted estimate is desired.

ANOVA (�2 or �2) Run the analysis as an ANOVA using
the GLM program; click on the
OPTION requesting an effect size
to obtain �2. Use the Hay’s
correction formula by hand if an
adjusted estimate is desired.

Regression (R2 or R2*) Run the REGRESSION procedure.
Both the uncorrected R2 and the
corrected variance accounted for
(R2*) estimates are displayed, by
default.

MANOVA
(multivariate �2 or �2)

Run the analysis as a MANOVA
using the GLM program; click on
the OPTION requesting an effect
size to obtain �2. A corrected
estimate, multivariate �2,
(Tatsuoka, 1973), can be computed
by hand.

Descriptive discriminant
analysis
(multivariate �2 or �2)

Run the analysis as a MANOVA
using the GLM program; click on
the OPTION requesting an effect
size to obtain �2. A corrected
estimate, multivariate �2 (Tatsuoka,
1973), can be computed by hand.

Canonical correlation
analysis (Rc

2 or Rc
2*)

Run the analysis in the MANOVA
procedure using the syntax
suggested by Thompson (2000).
The Rc

2 is reported. Apply the
Ezekiel correction by hand if a
corrected value (Rc

2*) is desired.

Note. ANOVA � analysis of variance; GLM � general linear model;
MANOVA � multivariate analysis of variance.
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ANOVA study involving five therapy sessions of intervention
targeting depression should not be expected to equal the eta
squared in a similar intervention involving 20 therapy sessions.
Effects across such disparate studies should not be compared
apples-to-apples without taking into account intervention differ-
ences. In other words, effect sizes are not magically independent of
the designs that created them.

Third, for various reasons summarized by Wilkinson and Task
Force on Statistical Inference (1999), report confidence intervals
for effect sizes and other study results. One reason for recommend-
ing confidence intervals is that these intervals are readily amenable
to graphic presentation, thus allowing a large number of effects
across studies to be compared in an economical manner (Thomp-
son, 2002b). Figures graphing confidence intervals can be easily
prepared in Excel using the Stock Chart menu and inputting the
two interval endpoints and the point estimate (e.g., the mean or the
effect size) as “High,” “Low,” and “Close,” respectively.

A second reason for recommending confidence intervals is that
the widths of intervals can be compared to evaluate the precision
of the estimates in a given study or a given literature. A third
reason for preferring intervals is that the consultation of intervals
across studies will eventually lead to an accurate estimate of
parameters even if a priori expectations are wildly wrong
(Schmidt, 1996).

Confidence intervals for parameter estimates such as means,
medians, or standard deviations can be computed using formulae.
However, confidence intervals for effect sizes cannot be computed
using formulae and instead must be estimated using iterative
statistical methods normally requiring specialized software. Fleish-
man (1980) presented the basic theory underlying these estimates.

Cumming and Finch (2001) provided an excellent tutorial on
estimating confidence intervals for effect sizes. Free software is
available to generate the estimates (cf. Algina & Keselman, 2003;
Smithson, 2001; Steiger & Fouladi, 1992). Cumming, Williams,
and Fidler (in press) explain how confidence intervals can be used
to inform judgments about result replicability.

Suggestions for Interpreting Effect Sizes

In his various books on power analysis (cf. Cohen, 1968),
although he hesitated to do so, Jacob Cohen proposed some ten-
tative benchmarks for what might be deemed small (e.g., d � |.2|,
�2 � 1%), medium (e.g., d � |.5|, �2 � 10%), and large (e.g., d �
|.8|, �2 � 25%) effects, as regards the typicality of results across
the entirety of the social science literature. He felt that people
would be less likely to focus on effect sizes absent such bench-
marks. Indeed, Kirk (1996) argued that one reason why effect sizes
have gained increasing popularity is that Cohen provided this
interpretive framework.

But as Thompson (2001) noted, “if people interpreted effect
sizes [using fixed benchmarks] with the same rigidity that � � .05
has been used in statistical testing, we would merely be being
stupid in another metric” (pp. 82–83). One-size-fits-all rules of
thumb are not always very helpful in interpreting effect sizes, as
Prentice and Miller (1992) pointed out in their article, “When
small effects are impressive.” The context of the study (e.g.,
whether the outcome is life or death, whether other effective
interventions already exist) necessarily impacts the evaluation of
effect sizes.

For example, the eta squared effect size for smoking versus not
smoking on longevity is around 2%. We deem the result quite
noteworthy, first because the outcome is so precious and, second,
because related study after study has replicated this approximate
effect.

In general, we believe that effect sizes should be interpreted by
(a) considering what outcome is being studied and (b) directly and
explicitly comparing effects with those in related prior studies, and
not by rigidly invoking Cohen’s benchmarks for small, medium,
and large effects. It is exactly by directly and explicitly comparing
the effects in the study with those in the related prior studies that
the replicability of results can be evaluated. As Cohen (1994)
explained in some detail, statistical significance tests do not eval-
uate result replicability. That is why direct comparisons of effects
across studies are so critical. It is exactly through these compari-
sons, and not by statistical testing, that the serendipitous or anom-
alous result is detected.

One caveat must be emphasized, however. When researchers are
conducting groundbreaking research in areas of inquiry involving
no or few previous studies, effect sizes cannot be evaluated in the
context of related prior effects. In such situations, the use of
Cohen’s benchmarks is then more appropriate.

In Howell’s (2002) words: “We should not make too much of
Cohen’s levels, but they are helpful as a rough guide” (p. 206), at
least in new areas of inquiry. But in more established areas of
research, “there is no wisdom whatsoever in attempting to associ-
ate regions of the effect-size metric with descriptive adjectives
such as ‘small,’ ‘moderate,’ ‘large,’ and the like” (Glass, McGaw,
& Smith, 1981, p. 104).

An Applied Example

Consider a hypothetical literature addressing whether counsel-
ing psychologists, on average, are happier than the general popu-
lation. The hypothetical measurement has a normative sample
mean of 50 and standard deviation of 10. Let us presume that,
diagnostically, people are flagged as having clinically noteworthy
happiness if Xi 
 60.0.

Table 2 presents the hypothetical universe of prior studies. We
compare interpretations from (a) a published literature selected
from available studies only if statistical significance is achieved,
(b) “vote counting” of statistically significant results, (c) consult-

Table 2
Hypothetical Literature Consisting of Nine Studies of the
Happiness of Counseling Psychologists

Study M SD n p d

1 64.9 11.4 21 .063 .430
2 68.0 10.9 9 .059 .734
3 63.8 8.7 22 .053 .437
4 62.3 11.2 88 .057 .205
5 67.5 9.9 8 .069 .758
6 64.0 9.1 21 .058 .440
7 65.3 11.1 21 .041 .477a

8 63.6 13.2 63 .034 .273a

9 58.0 9.7 96 .046 �.206a

a In a literature plagued by the “file drawer” problem (Rosenthal, 1979),
only these studies would be published.
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ing effect sizes (here Cohen’s d) for all studies, and (d) confidence
intervals graphically reported for the literature as a whole.

First, if only statistically significant studies were admitted to the
published literature, Studies 1–6 would be subjected to the “file
drawer” problem (i.e., nonsignificant results are filed and not even
submitted for publication) and would perish (Greenwald, 1975;
Rosenthal, 1979). Such a literature has not been informed by
Rosnow and Rosenthal’s (1989) admonition that “surely, God
loves the .06 [level of statistical significance] nearly as much as the
.05” (p. 1277).

The problem with a literature driven solely by statistical signif-
icance tests is that although researchers use small alpha levels,
some Type I errors will inevitably occur across a large literature.
These are then afforded priority for publication. As Thompson
(1996, p. 28) explained: “This is problematic in the context of a
bias against reporting results that are not statistically significant,
‘because investigators generally cannot get their failures to repli-
cate published, [and so] Type I errors, once made, are very difficult
to correct’” (Clark, 1976, p. 258).

Second, if vote counting (i.e., counts of significant vs. nonsig-
nificant studies) was used to interpret the literature, the vote would
be mixed, 3 to 6. Such mixed results are not uncommon and occur
partly because, as a discipline, we conduct our studies with stun-
ningly low power. As Schmidt and Hunter (1997) noted, average
power

in typical studies and research literatures is in the .40 to .60 range. . . .
That is, in a research area in which there really is a difference or
relation, when the significance test is used to determine whether
findings are real or just chance events, the null hypothesis significance
test will provide an erroneous answer about 50% of the time. This
level of accuracy is so low that it could be achieved just by flipping
a (unbiased) coin! (p. 40)

One problem with vote counting, even if power were not such a
serious problem, is that vote counting does not tell all that is of
importance to know. As Roger Kirk (1996) explained:

. . . a rejection means that the researcher is pretty sure of the direction
of the difference. Is that any way to develop psychological theory? I
think not. How far would physics have progressed if their researchers
had focused on discovering ordinal relationships? What we want to
know is the size of the difference between A and B and the error
associated with our estimate; knowing that A is greater than B is not
enough. (p. 754)

Third, if effect sizes were reported for all hypotheses, we would
know that d ranged from �.206 to .758. We would know that eight
of the nine studies had positive d values, which bears directly on
result replicability. We would know that the weighted average d
across the literature was .189, or roughly 0.2 standard deviations.
This average (.189) was computed by weighting each sample d by
study sample size; a sophisticated alternative is to create a pooled
estimate by weighting by effect variance (see Cohn & Becker,
2004).

If we believe that happiness is normally distributed, about
84.13% of the population has happiness less than our gold standard
person with a happiness score of 60.0 (i.e., 1 standard deviation
above the normative sample mean of 50.0). The 349 counseling
psychologists in the hypothetical nine prior studies are roughly 0.2
standard deviations (i.e., the weighted average d) above 60.0.

Whether this average effect size (or any other) is noteworthy is
a value judgment. The difference may be noteworthy if we care a
lot about counseling psychologists and how happy they are. Such
value judgments are inescapable in research. And remember that
statistical significance testing also cannot make these value judg-
ments for us.

The tabled results also emphasize the importance of reporting
effect sizes for all results, including those that are statistically
nonsignificant. Note that the weighted average d for all nine
studies was .189, whereas d for the three statistically significant
studies was .041.

Not reporting effect sizes for nonsignificant results is the same
as treating these effects as zero, which amounts to the fallacy of
“accepting” the null hypothesis. As Wilkinson and Task Force on
Statistical Inference (1999) emphasized: “Never use the unfortu-
nate expression ‘accept the null hypothesis.’ Always [italics added]
provide some effect-size estimate when reporting a p value” (p.
599).

Fourth, confidence intervals might be reported for the parameter
of interest (here, M) or for the related effect size (here d). Figure
1 graphically presents the 95% confidence intervals about the nine
sample means.

What do we gain from such a presentation? Confidence intervals
tell us about the precision of our estimate or of the literature. Every
value within a given interval is considered a plausible estimate in
a given context. Such intervals help us to see that our studies are
being conducted with too little precision.

Such confidence intervals also help us to interpret our study in
direct and explicit comparison with results in prior studies. If the
ninth study was our research, we would not be sanguine about
overinterpreting our results. Our mean is anomalously low. The
nine intervals have an average lower bound of about 59 and an
average upper bound of around 69. The comparison would force us
to reflect on what may have been different in our study versus the
prior eight studies.

Such comparisons do evaluate result replicability. Statistical
significance tests do not evaluate result replicability (Cohen, 1994;
Thompson, 1996). Such comparisons facilitate the “meta-analytic
thinking” so important in good science (Cumming & Finch, 2001).
For example, the Figure 1 results suggest that (a) precisions vary
considerably across studies, as reflected in the variable widths of
the intervals; (b) the means themselves are somewhat variable; but
(c) the means tend to fall within the range of about 60 to about 70
(i.e., 1–2 standard deviations above the normative mean).

Figure 1. Confidence intervals (CI; 95%) of means from nine studies.
Solid squares � mean.
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Conclusions

Although it is important to report effect sizes for all primary
results, regardless of the outcome of statistical tests, there may not
be one particularly preferred effect index across all studies. The
field is still learning the pluses and minuses of different choices,
and new effect indices are being developed (cf. Hess et al., 2001).

Tracey (2000) suggested that presenting effect size is “easier for
most people to grasp” and the “presentation of effect sizes and
confidence intervals would make for easy translation into meta-
analytic studies” (p. 183). Of most help will be interpretations that
emphasize direct and explicit comparisons of effects in a new
study with those reported in the prior related literature, with a
focus on evaluating result replicability.
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Appendix

Computation of Illustrative R2 and Adjusted R2 (R2*) Values

1 � �� n � 1	 / � n � v � 1	 * �1 � R2 	� � R2* Shrinkage % Shrinkage

1 � ��120 � 1	 / �120 � 12 � 1	 * �1 � .95	� � .944 .006 .59
1 � �� 30 � 1	 / � 30 � 6 � 1	 * �1 � .95	� � .937 .013 1.37
1 � �� 5 � 1	 / � 5 � 1 � 1	 * �1 � .95	� � .933 .017 1.75
1 � ��120 � 1	 / �120 � 12 � 1	 * �1 � .50	� � .444 .056 11.21
1 � �� 30 � 1	 / � 30 � 6 � 1	 * �1 � .50	� � .370 .130 26.09
1 � �� 5 � 1	 / � 5 � 1 � 1	 * �1 � .50	� � .333 .167 33.33
1 � ��120 � 1	 / �120 � 12 � 1	 * �1 � .05	� � �.057 .107 213.08
1 � �� 30 � 1	 / � 30 � 6 � 1	 * �1 � .05	� � �.198 .248 495.65
1 � �� 5 � 1	 / � 5 � 1 � 1	 * �1 � .05	� � �.267 .317 633.33

Note. n � the sample size; v � the number of predictor variables; R2 � the uncorrected multiple correlation
squared coefficient; and R2* � the “corrected” or “adjusted” multiple correlation squared coefficient.
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