
 Crafting Material Interfaces
 Final project ~ Fall 2011 ~ Dena Molnar

Woven Sensors

Concept

As part of my final project I was interested in developing and simulating a series of textiles whose sensing capabilities are inherent in the construction of the material. In
the woven prototype, I used a construction called deflected double weave, which allows for areas of conductive warp and weft to ‘float’ over each other instead of weave
together. By inserting Velostat between these layers, a series of pressure sensors was created. For the descriptions in Grasshopper, I used Firefly to simulate when pressure is
applied to the material. Firefly is a Grasshopper plug in which links modeling and Arduino, allowing for interactive prototyping.

Application and Future Development

I invision that these woven pressure sensors could be constructed on a very small scale, allowing for a material with dense sensing points. Modeling this serves as a way to
visually test the functionality of the sensors, while providing an acurate description of a material’s construction/surface topology. From this series of explorations, I am
interested in further developing descriptions that simulate actuated materials.

Prototyping Background

To begin this series of Investigations,
I have been working in a weaving studio
to develop prototypes. I wound a warp
of wool, bamboo and steel threads .
The steel ends in the warp were used as
inputs in the pressure sensor circuit
design. This image shows the warp
wound onto a beam at the back of the
loom, threaded through a sequence
of eylets called heddles and through
a comb like frame called a reed. The
threading maintains the order that the
warp ends will weave.

Woven Sensor

This image displays the finished
woven protoype. As mentioned earlier,
I utilized a construction called deflected
double weave, which allows for areas of
conductive weft (the horizontal threads)
to “float” over areas of conductive
warp (vertical threads). For the first set
of visualizations, the conductive warp
channels were used as inputs and the
wefts were connected to ground by a
steel warp stripe at far right. I inserted
Velostat between the 2 conductive
layers to create resistance. When
pressed, Velostat decreases in
 resistance, creating a lower value
reading.

Sensor Circuit Connections

Here you can see that conductive warp
channels are connected to 3 alligator
clips (White, Green and Red) that are
in turn used as Analog input pins on an
Arduino. The conductive wefts are
connected to ground via Yellow clip.

Arduino and Processing

To test the pressure sensors, I used
a simple Arduino code to read the
incoming data from the serial port. I
then used a Processing sketch to
visualize when one of the sensors was
being pressed.

Arduino Code

void setup()
{
 Serial.begin(9600);
 digitalWrite(A0, HIGH);
 digitalWrite(A1, HIGH);
 digitalWrite(A2, HIGH);
//other pins not used
}

void loop() {
 Serial.print(analogRead(A0));
 Serial.print("\t");
 Serial.print(analogRead(A1));
 Serial.print("\t");
 Serial.print(analogRead(A2));
 Serial.println();
 delay(100);
}

Processing Code

import processing.serial.*;
Serial port;
int[] numbers = { 0, 0, 0 };
int[] maxvals = { 255, 255, 255 };
//write coordinates for each pressure sensor

void setup()
{
 size(500, 250);
 println(Serial.list());
 port = new Serial(this, "COM8", 9600);
 port.bufferUntil('\n');
}

void draw() {
 for (int i = 0; i < numbers.length; i++) {
 fill(constrain(map(numbers[i], 0, maxvals[i], 0, 255), 0, 255));
 rect(i * width / numbers.length, height / 2, 50, 50);
 }
}

void serialEvent(Serial p)
{
 String s = p.readStringUntil('\n');
 numbers = int(s.trim().split("\t"));
}

Modeling Background

As part of my investigations this
semester, I developed a series of
descriptions that sought to render
textiles. I had come across some
documentation online, but was
searching for a simple/ easy to
understand way of doing this. Initial
attempts focused on constructing simple
weaves. I also tested using the
 Image Sampler in Grasshopper to import
bitmaps developed in a textile program.
This proved problematic because the tool
read “grey” areas of the bitmap,
producing unpredicable weaves.

Final Solutions

The most relaible solution involved
importing Bitmaps through a variable
path in the C# component of
Grasshopper. In general, the
Grasshopper description became much
simpler, once I started using this .
To do this, I added the Variable
 Path to the list of inputs. I then set the
Path to the desired Bitmap.

C # Code private void RunScript(string f_path, double width, double height, ref object A, ref object B)
 {
 //......................load bitmap and get resolution along x and y
 Bitmap my_image = new Bitmap(f_path);

 int rx = my_image.Width;
 int ry = my_image.Height;

 //.................................calculate pixel width
 double PixelWidth = width / (double) (rx - 1.0);

 //...................................Create the array of elevation values
 double [,] weftht = new double[rx, ry]; //height values
 double [,] warpht = new double[rx, ry]; //height values
 DataTree<Point3d> warp = new DataTree<Point3d>();
 DataTree<Point3d> weft = new DataTree<Point3d>();

 int i;
 int j;
 //.....................................Compute the Wefts
 //.....................................extract elevation values from brightness component of bitmap
 for(j = 0; j < ry;++j) {
 for(i = 0; i < rx; ++i) {
 Color c = my_image.GetPixel(i, j);
 weftht[i, j] = (c.GetBrightness()) * height;
 weft.Add(new Point3d(i * PixelWidth, ry - (j * PixelWidth), weftht[i, j]), new GH_Path(j));
 }
 }
 //.....................................Compute the Warps
 //.....................................extract elevation values from brightness component of bitmap
 for(j = 0; j < ry;++j) {
 for(i = 0; i < rx; ++i) {
 Color c = my_image.GetPixel(i, j);
 warpht[i, j] = height - (c.GetBrightness()) * height;
 warp.Add(new Point3d(i * PixelWidth, ry - (j * PixelWidth), warpht[i, j]), new GH_Path(j));
 }
 }

 A = weft;
 B = warp;

Weave Draft

I selected an area of my weave draft with
pocket sensors to render, as using the
entire file tended to crash Grasshopper.
I explored inputting the weave data into
Excel and importing this information in
place of Bitmaps, but Bitmaps are still
the most visually useful.

Arduino ,Grasshopper, and Firefly

Firefly is a plug in for Grasshopper, which
allows you simulate data read from an
Arduino. To use these tools in tandem,
I uploaded Firefly code to the Arduino
that allows communication between
Arduino and Grasshopper/Firefly. In the
GH description, I used Arduino/Firefly
components that matched my
physical Arduino and port. The
Grasshopper simulation is not un like a
Processing sketch in that it visually
represents the data otherwise seen in
Arduino’s serial monitor.

By replacing the Corrogation_Height
slider with an input pin (A0) from the
Arduino Description, I was able to control
the height by pressing down on the
woven pressure sensor connected to
this same pin on the physcial Arduino. At
this point, all 3 input pins connected to
the textile and Arduino could be used to
control height.

For the Final solution, I wanted to
control the areas of deformation
indepedently with respect to the actual
location of the pressure sensors on the
textile. For the circuitry, This involved
disconnecting the conductive wefts
connected to a common ground and
having them reconnected
independently as Digital Outputs on the
Arduino. For the Grasshopper
Description, this involved minimal
changes in the available Firefly code, as
well as defining individual domains (UV)
for each “pocket” pressure sensor and
using these domains as variables in the
C# component. As a final step, I bypassed
remapping the values of the sensor
readings (with the remap component) by
adding a Variable “Pocket Pressure” and
dividing the incoming values by 1023.

Independent Sensor Simulations

From Top:
Not pressed;
Bottom Right pressed
All Pressed

Thank you

Video of Final Simulation:

http://www.youtube.com/watch?v=2zG2
UjtKTqw&feature=youtu.be

