NEW TEXTILES

MAS 681, E14-493

Professor: Leah Buechley

TA: Emily Lovell

Tuesdays 3-6pm

http://newtextiles.media.mit.edu/2012

SOFT ELECTRONICS

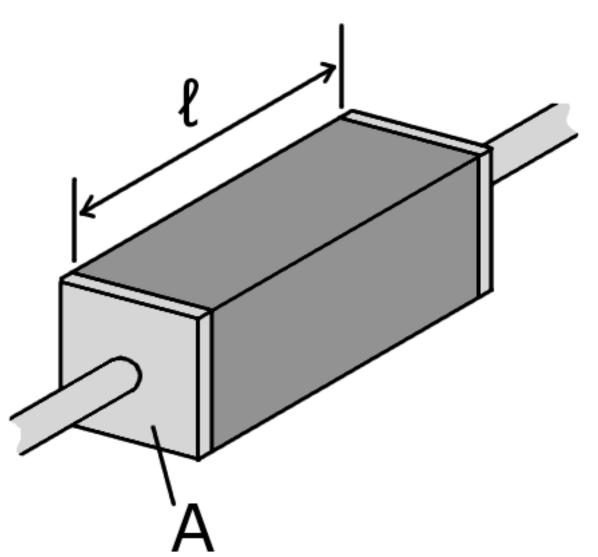
CONDUCTIVE TEXTILES

UNITS & MEASUREMENT CONDUCTIVITY

Resistance (R)

an empirical measurement, dependent on material and length, area, or volume measured in Ohms $\,\Omega\,$

Resistivity (ρ)


an intrinsic property of a material measured in Ohm meters Ωm

Conductivity (σ)

an intrinsic property of a material the inverse of resistivity measured in siemens/meter S / m

$$\rho = R \frac{A}{\ell}$$

$$\sigma = \frac{1}{\rho}$$

Material	$\rho (\Omega m)$	σ (S/m)
Silver	0.000000159	63,000,000
Copper	0.000000168	59,600,000
Gold	0.000000244	58,000,000
Aluminum	0.000000282	35,000,000
Nickel	0.0000000699	14,300,000
Tin	0.000000109	9,170,000
Carbon (graphite)	0.000078	128,200
Sea water	0.2	4.8
Distilled fresh water	180,000	0.0000055
Glass	1.0 x 10 ¹⁰	1.0 x 10 ⁻¹⁰
Air	1.3 x 10 ¹⁶	8.0 x 10 ⁻¹⁵

FIBERS

FIBER

"Any substance, natural or manufactured, with a high length to width ration and with suitable characteristics for being processed into a fabric."

- Kadolph, S. (2007), *Textiles*, Prentice Hall, Upper Saddle River, NJ

Conductive fibers

- Metal: copper, steel, tin, aluminum
- Carbon
- Carbon nanotube

YARNS

YARN

"A continuous strand of textile fibers, filaments, or materials in a form suitable for knitting, weaving, or otherwise intertwining to form a textile fabric"

- American Society for Testing and Materials (ASTM)

Conductive yarns: metal wrapped

- Fabric core wrapped with metal
- Highly conductive
- Beautiful
- Fragile
- Sewability: not machine sewable

Conductive yarns: metal plated

- Fabric core plated with metal (most commonly silver)
- Reasonably conductive
- Plating tarnishes and cracks with washing and wear
- Silver can be polished
- Sewability: some varieties machine sewable

Conductive yarns: spun metal fibers or filaments

- Different metal/fabric blends
- 100% stainless steel
 - Highly conductive
 - Corrosion resistant
 - Difficult to work with
- Stainless/wool and stainless/polyester blends
 - Resistive
- Sewability: some varieties machine sewable as bobbin thread

Conductive yarns: stranded wire

- 100% metal core
- Highly conductive
- Insulated
- Contact points need to be stripped and soldered
- Stripped wire vulnerable to breakage
- Sewability: some varieties machine sewable as bobbin thread

FABRICS

FABRIC

"A planar substance constructed from solutions, fibers, yarns, fabrics, or any combination of these."

- Kadolph, S. (2007), *Textiles*, Prentice Hall, Upper Saddle River, NJ

Fabrics constructed with conductive yarns

- Most are highly conductive
- Beautiful
- Sometimes useful weaves (ie: lines)
- Often very expensive

Conductive fabrics: metal plated

- Traditional cloth plated with metal
- Common platings
 - Copper
 - Tin
 - Nickel
 - Silver
- Most are highly conductive

1ST HANDS-ON ASSIGNMENT

conductive yarns + conductivity

http://newtextiles.media.mit.edu/2012

LAB SESSION

this week: 3-6pm on Thursday February 9

1ST ASSIGNMENT

registration survey due Wednesday, February 8