

#### **VMORPH:** VISUAL INTERFACE FOR TANGIBLE MORPHING OF OBJECTS

M. Ali Hashmi, Artem Dementyev, Heamin Kim, Amir Lazarovich, Hye-Soo Yang

# WHY

- There is <u>no physical means</u> of interaction for creating hybrid design forms or do hybrid 3D modeling.
- How to <u>extend and transform</u> the physical world in a digital space. (Bring everyday objects into digital world)
- How do we <u>create numerical geometry</u> based on everyday objects for 3D metamorphosis.
- <u>Applications</u>: fabrication, 3D printing, computer aided design (CAD), and geometric visualizations

# DESCRIPTION

- A physical way of <u>grafting</u> one form into other
- A way of <u>capturing merged objects</u>
- Interface for <u>tangible interaction</u> with <u>3D digital</u> <u>shadows</u>
- Interaction results in a <u>3D metamorphosis</u> of physical objects in the digital world
- For <u>example</u>, take object 1 and object 2, and through their interaction produce object 3 in the digital space.

### **DESCRIPTION: OBJECT MERGE**



## **PAST WORK**

- Interactive mesh fusion based on local 3D metamorphosis (Kanai et al.,1999)
- This paper proposes a new mesh modeling scheme, called *mesh fusion*, based on threedimensional (3D) meshbased metamorphosis.



# GRAFTING

- Tissues from one plant inserted into another so that the two sets of vascular tissues may join together
- Grafting one <u>form</u> into another
- Form <u>attaches</u> itself to another form and begins exploring its <u>new potential</u>





# RHIZOME

- Any point can be connected with any other
- However, a <u>good</u> design requires seamless fusion of <u>form</u> and <u>function</u>







### **ADAPTATION: NEW FORMS**

- Friedrich Kittler's notion of adaptation: "It is we who adapt to the machine. The machine does not adapt to us."
- Similarly, the <u>new form</u> does not have to adapt to us; rather, it is we who have to adapt to the form.





## HOW IT WORKS

Physical workspace is augmented by Kinect sensor and image projector





Objects are 3D scanned and are translated into geometric forms for machine interaction by a <u>motion/vision interpreter</u> <u>program</u>



Tangible object interaction is translated into 3D metamorphosis in digital world <u>subject</u> to algorithmic and geometric constraints



## DEMO VIDEO



https://vimeo.com/77008275

#### **AFFORDANCE INHERITANCE**

- Affordance matters (McGrenere et al.,2000)
- Physical objects inherit affordance from the material they are made of (Hornecker, 2012)
- Similarly, digital objects inherit affordance from digital objects they are made of.



#### **MERGING TWO OBJECTS: MULTIPLE SCENARIOS**





CPlane x 9.607 y 97.858 z 0.000 Millimeters Default Grid Snap Ortho Planar Osnap SmartTrack Gumball Record History Filter Available physical memory: 13915 MB

#### MERGING TWO OBJECTS: MULTIPLE SCENARIOS





#### **OBJECT MERGING: FINAL CROSS-SECTION**















#### **FUTURE DIRECTION: PHYSICAL OBJECT AS ALGORITHM MODIFIER**

- Physical workspace is augmented by adding <u>constraints</u> and <u>freedoms</u> through a <u>physical constraint object</u> -
- Analogous to "<u>physical dials and</u> <u>modifiers</u>" in Sensetable (Patten, 2001)
- The physical constraint object has different modes and changes the interaction parameters for the objects. For example, you can change <u>weights or coefficients</u> for each interacting object for 3D fusion.
- Or you can switch to <u>augment</u> mode (i.e. attaching one form to another) instead of <u>fusion</u> mode (combining one form with another).



