GRID-LSTM

MAS.S63, Eric Chu
Gentlemen, our learner overgeneralizes because the VC-Dimension of our Kernel is too high. Get some experts and minimize the structural risk in a new one. Rework our loss function, make the next kernel stable, unbiased and consider using a soft margin.

NEURAL NETWORKS

STACK MORE LAYERS
Neural Networks++

Memory
Attention
Bayesian
Extremely deep
A LSTM Recap

Motivation: problems with vanilla RNNs

- Vanishing gradient due to non-linearities
- Harder to capture longer term interactions

Solution:

“Long” “short-term” memory cells, controlled by gates that allow information to pass unmodified over many timesteps
A LSTM Recap

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
A LSTM Recap

Forget gate: which parts of memory vector to delete

Input gate: which parts of memory vector to update

Content gate: what should the memory vector be updated with

Output gate: what gets read from new memory into hidden vector
A LSTM Recap

\[
i_t = g(W_{xi}x_t + W_{hi}h_{t-1} + b_i)
\]

\[
f_t = g(W_{xf}x_t + W_{hf}h_{t-1} + b_f)
\]

\[
o_t = g(W_{xo}x_t + W_{ho}h_{t-1} + b_o)
\]

\[
c_{in_t} = \tanh(W_{xc}x_t + W_{hc}h_{t-1} + b_{c_{in}})
\]

\[
c_t = f_t \cdot c_{t-1} + i_t \cdot c_{in_t}
\]

\[
h_t = o_t \cdot \tanh(c_t)
\]
A LSTM Recap

\[H = \begin{bmatrix} Ix_i \\ h \end{bmatrix} \]

\[g^u = \sigma(W^u H) \]
\[g^f = \sigma(W^f H) \]
\[g^o = \sigma(W^o H) \]
\[g^c = \tanh(W^c H) \]
\[m' = g^f \odot m + g^u \odot g^c \]
\[h' = \tanh(g^o \odot m') \]
A LSTM Recap: Stacked LSTM

Stacked LSTM
Grid-LSTM: Motivation

Stacked LSTM, but LSTM units connections along depth dimension as well as temporal dimension.
Grid-LSTM: Motivation

2d Grid LSTM block
Grid-LSTM: 1D

1D Grid-LSTM = feedforward NN with LSTM cells instead of transfer functions such as tanh and ReLU

Very closely related to Highway Networks
Grid-LSTM: 3D

3D Grid-LSTM = Multidimensional LSTM, but again with LSTM cells in depth dimension

2D Multidimensional RNN has 2 hidden vectors instead of 1

3d Grid LSTM Block
Grid-LSTM: All together now

- N-D Grid-LSTM has N inputs and N outputs at each LSTM block
Relation to Attention

LSTM: “The mechanism also acts as a memory and implicit attention system, whereby the signal from some input x_i can be written to the memory vector and attended to in parts across multiple steps by being retrieved one part at a time.”
- Quoc Le

Grid-LSTM: “Another interpretation of the attention model is that it allows an $O(T)$ computation per prediction step. So the model itself has $O(T^2)$ total computation (assuming the lengths of input and output sequences are roughly the same). With this interpretation, an alternative approach to the attention model is to lay out the input and output sequences in a grid structure to allow $O(T^2)$ computation. This idea is called Grid-LSTM”
- Quoc Le
Experiment

Task: Character prediction

3-layer stacked LSTM vs. 3-layer stacked Grid-LSTM
Future Work

Application to speech recognition, which uses stacked RNNs on spectrograms

- Start with 2D Grid-LSTM
- Can also try 3D Grid-LSTM

Machine translation

- 3D Grid-LSTM instead of encoder decoder network