

Overview

In this introduction:

- Requirements for AGI architectures
- Representation and symbol grounding
- Configurable cognition: understanding emotion
- Motivation and autonomy

MicroPsi Architecture

• Origins: Psi theory (Dörner et al. 1999, 2002)

Dietrich Dörner Universität Bamberg

MicroPsi Architecture

- Origins: Psi theory (Dörner et al. 1999, 2002)
- MicroPsi 1 (2003–2007):
 - Framework for simulating cognitive agents
 - Explorative agents in virtual worlds
 - Evolutionary simulations
 - Learning and classification
 - Robot control
- MicroPsi 2 (2012–current):
 - new simulation framework
 - adaptation for knowledge representation

Basic premises

 Are minds characterized by a single organizing principle, or by a complex set of very particular constraints?

→ Human minds are solution to a very specific class of control problems, with generally applicable intelligence as a by-product

Cognitive Artificial Intelligence

Methods should focus on components and performances necessary for intelligence:

- Whole, testable architectures
- Universal Representations:

Grounded neuro-symbolic representations (integrate both symbolic and distributed aspects)

• (Semi-) Universal Problem Solving:

Learning, Planning, Reasoning, Analogies, Action Control, Reflection ...

Universal Motivation:

Polythematic, adaptive goal identification

Emotion and affect

Universal mental representations
 (compositional + distributed → neurosymbolic)

 (Semi-) General problem solving: Operations over these representations

(neural learning, categorization, planning, reflection, consolidation, ...)

Cognitive Integration MicroPsi

Perceptual grounding

Perceptual grounding and action

Perceptual grounding and action

Model of current situation, and protocol of past situations

Model of self

Abstractions of objects, episodes and types

Anticipation of future developments

Action selection and executive control

Action selection and executive control

Universal motivation: autonomous identification of goals

Emotional modulation and affect

Whole, testable architectures

Principles of Synthetic Intelligence (Bach 2003, 2009)

Cognitive Architectures

"Classical Cognitive Architectures" tend to focus on cognition as an isolated problem solving capability.

MicroPsi Architecture-simplified

MicroPsi Architecture—simplified

MicroPsi Architecture-simplified

MicroPsi Principles: Emotion

MicroPsi Principles: Perception

MicroPsi Principles: Perception

MicroPsi Principles: Action

Agent Functionality

- Episodic learning
- Goal-directed behavior, motivational system
- Emotional modulation
- Hypothesis based perception
- Simple planning
- Execution of hierarchical plans

Control and simulation

Cognitive Integration

MicroPsi

Cognitive Integration

MicroPsi

Implementation: MicroPsi 2 (Bach, Welland 12)

MicroPsi 2

- New software basis (more lightweight and modular)
- Minecraft as (optional) simulation platform (implementation: Kemper 2014)
- Currently: design of social games for testing of motivation model

Representation in Psi: Neurons and Quads

"Cortex" and Activators

Cognitive Integration MicroPsi 39

Cognitive Integration

46

Cognitive Integration MicroPsi

Cognitive Integration MicroPsi 48

From Quads to Node Nets

→ "Quad"

Node Nets: Concept Nodes

Basic Building Block: Concept Node

Node Nets: Link Types

Node Nets: Concept Nodes

Basic Building Block: Concept Node

Building agents with node nets

- Graphical representation + python shell
- Node types:
 - individual NN elements (sigmoidal neurons etc.)
 - concept nodes
 - script nodes (state machines for distributed execution)
 - sensors and actuators
 - node spaces
 - control nodes
 - native modules
 - new: multi-state nodes

Request Confirmation Networks

Using hierarchies for perception

HyPercept (Hypothesis based Perception, Dörner 1999)

- Features from environment trigger sensors
- Sensors activate object hypotheses (activation spreads upwards)
- Object hypotheses are successively tested (activation spreads downwards)
- Sensors confirm or invalidate hypotheses
- Finally:
 - If only one hypothesis left: successful recognition
 - If multiple hypotheses left: further exploration
 - If no hypothesis left: new object

Hierarchical Representation

Cognitive Integration MicroPsi 58

Protocol Memory

Emotion and Motivation in MicroPsi

Goal: Computational Model of Emotion

Why is emotion so interesting?

- Obviously: applications
- Phenomenal aspect of emotion feeling:
 Emotion may be a critical juncture when it comes to understanding the mind
- → What is emotion?

Emotion

 Having an emotion is different from behaving as if having an emotion

- What is it like to have an emotion?
- Can emotion only be simulated, or can an artificial system be in an emotional state?
- is having an emotion a way or an aspect of information processing?

MicroPsi 61

Modeling emotion

Most models of emotion account for **description**:

- What emotional states can a system have?
- Which events (in the environment) trigger emotions?
- How can emotional states be expressed?
- How can emotional states be recognized?

(Plutchik 80; Ortony, Clore & Collins 88; Scherer 93; Gratch & Marsella 04)

vs. "How can a system have an emotion?" (functional)

Cognitive Integration MicroPsi 62

Conceptual analysis: Ortony, Clore, Collins 1988:

Affective dimensions in the PSI theory (Dörner 1999)

Compare: Affective dimensions (Wundt 1910)

Affective dimensions in the PSI theory

The Psi theory about emotion

- Affect is seen as a configuration of a cognitive system
- Modulators of cognition:
 - arousal, selection threshold, securing threshold, resolution level
 - estimate of competence and certainty
 - pleasure/distress signals → valence
- Affective state is emergent property of modulation
- Directed affects (higher-level emotions) emerge by association of demand with appetive or aversive objects/situations

Purpose of emotional modulation

- Control width, depth and bias of operations on mental representations of the agent
 - → modify perception, memory, planning and action selection
- Reduce complexity of cognitive processes

Motivational System

- All goals attempt to satisfy a (hard-wired) demand
 - → flexible goals, but (evolutionary) suitable behavior

Motivational System

Drives correspond to set of demands of the agent

Cognitive Integration

Physiological Drives

- if autonomous regulation of body processes fails
 - → actively manage physiology (seek food, water, healing, shelter, rest, warmth, ...)
 - → escape perilious situations
 - → implicitly seek physical survival

Social Drives

- Affiliation: structure social interaction beyond rational utility
- increased by 'legitimacy signals', decreased by 'anti legitimacy signals' (and adaptively over time); allows for non-material reward and punishment

- external legitimacy: group acceptance
- internal legitimacy: "honor", conformance to internalized social norms

Cognitive Drives

Competence

- epistemic (problem specific)
- general (ability to satisfy demands)
- effect oriented
- Uncertainty reduction
 - novelty seeking
- Aesthetics
 - evolutionary preferences (stimulus oriented)
 - abstract (representation oriented)

Motivational System

All possible goals correspond to (at least one) demand

Cognitive Integration

Needs and urges

Motivational System

drive = demand + urge indicator

motive = urge + goal situation

motive = urge + goal situation

association by learning:

retrogradient reinforcement

80

Cognitive Integration MicroPsi

Motivator:

situations leading up to goal = plan

Intention:

association by learning:

Cognitive Integration

Motive Selection

A motive is raised to an intention based on:

- relative strength of urge $\max(s_1, s_2, s_3, ... s_n)$
- opportunity
- expected success probability (heuristics) → value/risk
- selection threshold (adaptive; urgency)

Motive selection

Need becomes active

No autonomous regulation possible: Trigger *Urge Signal*

Try to satisfy urge opportunistically

No opportunistic satisfaction possible: Urge Strength – Suppression > Strength of *Leading Motive*: Try to recall strategy to satisfy urge

If no strategy is found:
Construct a plan to satisfy urge

If no plan is found: Increase need for exploration

Turn strongest motive into leading motive (intention)

Cognitive Integration MicroPsi 85

Motivation and Modulator Dynamics

Cognitive Integration MicroPsi 86

Emotions as directed affect + Modulation

Examples:

Fear: anticipation of aversive events (→ neg. valence) + arousal

Anxiety: uncertainty (→ neg. valence) + low competence + arousal, high securing behavior (frequent background checks)

Emotions as directed affect + Modulation

Examples:

Anger: Perceived obstacle (usually agent) manifestly prevented reaching of an active, motivationally relevant goal (\rightarrow neg. valence), sanctioning behavior tendency (\rightarrow goal relevance is re-directed to sanctioning of obstacle), arousal, low resolution level, high action readyness, high selection threshold

Sadness: Manifest prevention from *all* conceived ways of reaching active, relevant goal, without relevant obstacle (\rightarrow neg. valence), support-seeking behavior (by increased demand for affiliation), low arousal, inhibition of active goal \rightarrow decreased action readyness

Emotions as directed affect + Modulation

Examples:

- Pride: high competence (>> low securing rate), high internal legitimacy, likely coincidence with high external legitimacy
- Joy: high arousal + high perceived reward signal from satisfying a demand
- Bliss: low arousal + high perceived reward signal from satisfying a demand (since physiological demands often involve high arousal, mostly related to cognitive demands, such as aesthetics)

Example: computational creativity

 Creativity involves exploration of space of possible solutions to an incrementally defined problem

Example: computational creativity

- Creativity as a learning problem:
 - optimize problem representation
 - optimize constraint identification
 - optimize solution traversal
- Source of reward signal:
 - abstract aesthetics (better representations)
 - uncertainty reduction (problem space exploration)
 - competence (specific problem solving skills)
- "Eureka" moment: large "positive" delta during constraint match → reward signal

Demand dynamics:

Physiological Social Cognitive

Individual Variations by Parameterizing

Possible grounding of personality properties (FFM):

- Openness: appreciation of art and new ideas, curiousity
- Conscientiousness: rulefollowing vs. chaotic
- Extraversion: tendency to seek stimulation by environment and others
- Agreeableness: tendency for cooperativeness and compassion
- Neuroticism: emotional stability, effect of failure to self-confidence

Demand dynamics:

Physiological Social Cognitive

Demand dynamics:

Valence: Pleasure/Pain signals

Neuroticism: stronger experience of negative emotions, lower emotional stability

Extraversion: surgency, activity in social relations, expressivity (strong gain for affiliation and competence, high decay of affiliation)

Openness: desire for novelty, intellectual independence, non-conservatism, appreciation for art and new ideas

Agreeableness:

(strong positive and negative reward for affiliation, lower

Conscientousness, Rigidity:

(high loss in competence, high selection threshold, possibly low effect of demands on arousal and resolution

Thank you!

- Project home: micropsi.com
- Questions, ideas: joscha@mit.edu